I How Are Definite Integrals Related to the Principle of Least Action?

AI Thread Summary
The discussion focuses on the relationship between definite integrals and the principle of least action, specifically in the context of Goldstein's derivation. A question is raised about the mathematical theorem related to definite integrals and the expression involving variations at the endpoints. It is clarified that the approximation of the integral over a small interval relies on evaluating the function at a point within that interval, which is justified by the smallness of the deltas. The use of Taylor expansion is suggested as a method to understand the reasoning behind the evaluation of the function at the endpoints. Overall, the conversation emphasizes the nuances of applying definite integrals in the context of action principles.
Ben Geoffrey
Messages
16
Reaction score
0
This is with regard to my doubt in the derivation of the principle of least of action in Goldstein

Is there any theorem in math about definite integrals like this ∫a+cb+df(x)dx = f(a)c-f(b)d

The relevant portion of the derivation is given in the image.
 

Attachments

  • Capture.JPG
    Capture.JPG
    36.3 KB · Views: 624
Physics news on Phys.org
That only works when the variations in the endpoints are small. The integral over a small interval is approx. the function value at a point in the interval times the width of the interval.
 
But why is the variation due to ends points L(t2)Δt2 - L(t1)Δt1 rather than L(t2 +Δt2) - L(t1 +Δt1) . Makes more sense if it is L(t2 +Δt2) - L(t1 +Δt1)
 
Ben Geoffrey said:
But why is the variation due to ends points L(t2)Δt2 - L(t1)Δt1 rather than L(t2 +Δt2) - L(t1 +Δt1) . Makes more sense if it is L(t2 +Δt2) - L(t1 +Δt1)

If the deltas are small it makes no difference where you evaluate the function within the small interval.

To see this use a Taylor expansion.
 
thank you
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top