I How can Euler angles be visualized using a polar plot?

AI Thread Summary
The discussion focuses on visualizing Euler angles using a polar plot, specifically when projecting an ellipsoid onto the xy-plane. The user describes a process of rotating the ellipsoid around the z-axis and then the y-axis, resulting in a function for the Euler angle gamma based on angles alpha and beta. They express a preference for a stereographic net for visualization but encounter challenges due to the mapping of points at beta=0. Ultimately, the user proposes a solution by reformulating the rotation matrices, allowing them to plot the combined angle of alpha and gamma against the new rotation axis orientation and angle beta on a polar plot. This approach aims to effectively visualize the relationship between the Euler angles.
DrDu
Science Advisor
Messages
6,420
Reaction score
1,003
Dear Forum,

say I am projecting an ellipsoid along the z-axis to the xy-Plane. The resulting ellipsis is rotated around the z-axis by the angle gamma until the principal axes coincide with the x- and y axis.
Now before projecting, I rotate the ellipsoid first around the z- and then around the y-axis by angles alpha and beta, respectively.
In effect, I get the Euler angle gamma as a function of alpha and beta and I would like to visualise this. Of course, I could plot gamma over alpha and beta, but intuitively, I would prefer to plot over a stereographic net with angular coordinates alpha and beta. However, In a stereographic projection, all points with different angle alpha at beta=0 are mapped to one point, but gamma becomes proportional to alpha, so this does not work.
I suppose this kind of problem of visualising Euler angles is not new. Do you have any ideas?
 
Mathematics news on Phys.org
I think I solved my problem: Writing ##R_z(\alpha)R_y(\beta)R_z(\gamma)## as ## R_z(\alpha)R_y(\beta)R_z(-\alpha)R_z(\gamma+\alpha)=R_{y'(\alpha)}(\beta) R_z (\gamma+\alpha)##, I can plot ##\alpha+\gamma## as a function of the orientation of the new rotation axis ##y'(\alpha)## and the rotation angle ##\beta## on a polar plot.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top