I How Can Fermi Pressure Be Explained in Relativistic Conditions?

Silviu
Messages
612
Reaction score
11
Hello! I am reading a derivation for Fermi pressure and the author assumes that the electrons in a box are cooled so much that they occupy all the states in the momentum space from p=0 up to a maximum value of p. Then after he obtains a formula for the pressure, he simplifies the formula further, by assuming a very relativistic gas. I am not sure I understand how can we make both assumptions. If we reduce it as much as we can (basically close to 0K), it means that the velocities are very small (the temperature is given by the speed of the particles, so small temperature means small speed). So if the velocities are small, how can one assume "very relativistic" conditions? Thank you!
 
Physics news on Phys.org
At low temperature, all of the low energy states are filled. The only states available for interaction are the high energy states, which have an energy near the Fermi energy. This can lead to the particles being relativistic, even at low temperature.
 
phyzguy said:
At low temperature, all of the low energy states are filled. The only states available for interaction are the high energy states, which have an energy near the Fermi energy. This can lead to the particles being relativistic, even at low temperature.
So you mean that if you have a big enough number of electrons in the volume, the ones with the highest momentum, will be relativistic, just because all the lower velocity states have been occupied?
 
Silviu said:
So you mean that if you have a big enough number of electrons in the volume, the ones with the highest momentum, will be relativistic, just because all the lower velocity states have been occupied?

Yes, exactly. At least, that is my understanding.
 
Silviu said:
the temperature is given by the speed of the particles

The temperature is given by the average speed of the particles. Not all particles will have the average speed.
 
Is there a non interactive fermi gas?
Pauli principle saves the fermi gas from collapsing even at zero kelvin.There is cobditioned degeneracy pressure.
So separatedness of energy levels is only upto the conditoon that star is not big enough to overcome degeneracy pressure .Energy levels of nuclei are enormously big in comparison to atomic energy levels.
Does Pauli principle similarly maintains pressure in electron gas or fermion gas? How?
Please correct if my understanding is inadequate.
 
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...

Similar threads

Back
Top