I How can I model squeezed states in 3D optical modelling software?

Sciencemaster
Messages
129
Reaction score
20
TL;DR Summary
Is there any way to model squeezed states of light in optical modelling software such as OptiFDTD or ZEMAX?
I would like to model squeezed light and its evolution (such as when passing through lenses after being generated) using optics software such as OptiFDTD or ZEMAX. However, I don’t see any way to make such states…my plan was to simulate an Optical Parametric Amplifier to generate these states but I can’t seem to find any way to do that. Is there any way to generate squeezed states of light in a 3D optical modelling software (that allows you to view properties such as phase after some evolution)?
 
Physics news on Phys.org
I found a software that models (or at least helps design) Optical Parametric Oscillators called RP propulse: https://www.rp-photonics.com/rp_propulse.html. However, I am unsure if this software models the evolution of squeezed light or properties such as phase in 3D.Moreover, I can't seem to get my hands on the software as I am doing this recreationally and am not working on this with any organization. Is there some similar program I could use for this? Any help would be appareciated.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top