- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Suppose that $a,\,b,\,c,\,A,\,B,\,C$ are real numbers and $a\ne 0$, $A\ne 0$ such that
$|ax^2+bx+c|\le |Ax^2+Bx+C|$
for all real $x$.
Prove that $|b^2-4ac|\le |B^2-4AC|$.
$|ax^2+bx+c|\le |Ax^2+Bx+C|$
for all real $x$.
Prove that $|b^2-4ac|\le |B^2-4AC|$.