MHB How can we use hints to prove divisibility of Fibonacci numbers?

  • Thread starter Thread starter evinda
  • Start date Start date
AI Thread Summary
To prove that 30290 divides the Fibonacci number F_m, where m=n^13-n and n>1, it is essential to first establish that a^13 ≡ a (mod 2730). This is shown using Fermat's Little Theorem for the prime factors of 2730, confirming that 2730 divides a^13-a. The next step involves leveraging the relationship that if n divides m, then F_n divides F_m. Participants suggest that additional hints or properties may be necessary to connect the established modular equivalence to the divisibility of F_m by 30290. The discussion emphasizes the need for further exploration of Fibonacci properties in relation to divisibility.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I want to show that if $m=n^{13}-n$ and $n>1$ then $30290 \mid F_m$. (Hint: Show first that $a^{13} \equiv a \mod{2730}$.)

$F_m$ is the $m$-th Fibonacci number.I have shown the hint as follows:

$2730=2 \cdot 3 \cdot 5 \cdot 7 \cdot 13$.

Using Ferma's little theorem, we deduce that $a^{13}\equiv a \pmod{5}$, $a^{13}\equiv a \pmod{2}$, $a^{13}\equiv a \pmod{3}$, $a^{13}\equiv a \pmod{7}$ and $a^{13}\equiv a \pmod{13}$.Since $2,3,6,7,13$ are all relatively prime, we deduce that $2730 \mid a^{13}-a$.

But how can we use the fact that $a^{13} \equiv a \mod{2730}$ in order to deduce that $30290 \mid F_m$ ? (Thinking)
 
Mathematics news on Phys.org
Hey evinda! (Wave)

I think we need another hint.
Something like $n\mid m \Rightarrow F_n \mid F_m$.
Can we use that? Or something else? (Wondering)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top