How Can You Prove a Process is Markov?

  • Thread starter Thread starter vale
  • Start date Start date
  • Tags Tags
    Process
AI Thread Summary
To prove that a process P_t is Markov, it is essential to demonstrate that the transition probabilities are independent of past states. The discussion centers on a mean-reverting Brownian bridge and a proportional volatility process, with the dynamics influenced by an exogenous bootstrap procedure. A mathematical approach involves showing that the future state P(t+1) can be expressed as a function of the current state P(t) and independent random variables. The independence of the Wiener process W(t) from past values supports the Markov property. Ultimately, establishing these relationships mathematically confirms the Markovian nature of the process.
vale
Messages
3
Reaction score
0
This is my first time here, so... Hi everybody!

I've very little time to figure out the following problem ... and I am wandering if some of you can give me any help or just suggest me any good reading material...

The question is how you can prove a process P_t, given the dynamics, is Markov.
In short my process is on alternate intervals, a mean reverting brownian bridge dP_t = \frac{\alpha}{G-t}(Q-P_t)dt + \sigma dW_t, and a mean reverting proportional volatility process : dP_t = K(\theta -P_t)dt + \nu dW_t. The length of the intervals and their occurence is determined by an exogenous bootstrap procedure, which I believe, doesn't give any problems, being a resampling procedure with replacement, it doesn't generate any dependence with the past history...

How should I procede on your opinion? Any hints ?

Thank you very much in advance,
Vale
 
Physics news on Phys.org
Could this be of any help? When you say prove, do you mean empirically or mathematically?
 
Thank you for the reference and the reply!

Actually I meant a mathematical proof...
I think I should show somehow the transition probabilities are independent from the past realizations... but I don't Know how to retrieve them from the dynamic... :rolleyes:

Many thanks...
Vale
 
I guess I'd argue W(t) is independent of the past. Then equate Eq. (1) to Eq. (2) and solve for P(t). It'll be a function of t, W(t) and some constants. Since W is independent of the past, so's P(t).

{P.S. Oh, whoops! You said "on alternating intervals." Does that mean the two Eq's do not hold simultaneously?}

{P.P.S. In that case:

P(t+1) = P(t) + dP(t) = P(t) + a(dt) P(t) + b dW(t) = [a(dt)+1] P(t) + b dW(t).

Et+1[P(t+1)|P(t),P(t-1)...,P(0)] = (a+1) Et+1[P(t)|P(t),P(t-1)...,P(0)] + b Et+1[dW(t)|P(t),P(t-1)...,P(0)] = (a+1) P(t) + b Et+1[dW(t)]. QED

The last step is based on two premises: (i) E[X|X,Y,Z,...] = X, and (ii) dW(t) is independent of past history so E[dW(t)|P(t),P(t-1)...,P(0)] = E[dW(t)].}
 
Last edited:
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top