MHB How do g(x,t) and J_n(x) relate to the identity involving Bessel functions?

  • Thread starter Thread starter Another1
  • Start date Start date
  • Tags Tags
    Relationship
AI Thread Summary
The discussion centers on the relationship between the function g(x,t) and Bessel functions J_n(x), specifically how to demonstrate the identity involving their squares. It is established that g(x,t) can be expressed as a series involving Bessel functions, and bounds for J_0(x) and J_n(x) are provided. The orthogonality of Bessel functions is highlighted, suggesting a potential method to prove the identity involving their squared terms. Participants are encouraged to explore this orthogonality to derive the desired result. The conversation emphasizes the mathematical properties and relationships of Bessel functions in the context of the given identity.
Another1
Messages
39
Reaction score
0
$$g(x,t) = e^{(\frac{x}{2})(t-\frac{1}{t})}=\sum_{n=-\infty}^{\infty}J_{n}(x)t^{n}$$

and

$$\left| J_{0}(x) \right|\le 1 $$ and $$ \left| J_{n}(x) \right|\le \frac{1}{\sqrt{2}} $$

how to show that

1=$$(J_{0}(x))^{2}+2(J_{1}(x))^{2}+2(J_{2}(x))^{2}+...$$

I don't have idea
 
Last edited:
Mathematics news on Phys.org
Re: [please help]Bessel function

Another said:
$$g(x,t) = e^{(\frac{x}{2})(t-\frac{1}{t})}=\sum_{n=-\infty}^{\infty}J_{n}(x)t^{n}$$

and

$$\left| J_{0}(x) \right|\le 1 $$ and $$ \left| J_{n}(x) \right|\le \frac{1}{\sqrt{2}} $$

how to show that

1=$$(J_{0}(x))^{2}+2(J_{1}(x))^{2}+2(J_{2}(x))^{2}+...$$

I don't have idea
I haven't done the whole thing but note that Bessel functions are orthogonal:
[math]\int _0 ^1 J_{\nu} \left ( \alpha_{\nu ~ m} x \right ) ~ J_{\nu } \left ( \alpha_{\nu ~ n} x \right ) ~x ~dx = \frac{1}{2} \left [ J_{\nu + 1} \left ( \alpha _{\nu ~ m} \right ) \right ] ^2 \delta_ {m~n}[/math]

Does this give you any ideas?

-Dan
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top