- #1
phos19
- 6
- 0
Specifically given a purely magnetic hamiltonian with some associated vector potential :
$$ H = \dfrac{1}{2m} (\vec{p} - q\vec{A}) $$
How can I deduce if $$ \vec{L} = \vec{r} \times \vec{p}$$ is conserved? ( $$\vec{p} = \dfrac{\partial L}{\partial x'}$$, i.e. the momentum is canonical)
$$ H = \dfrac{1}{2m} (\vec{p} - q\vec{A}) $$
How can I deduce if $$ \vec{L} = \vec{r} \times \vec{p}$$ is conserved? ( $$\vec{p} = \dfrac{\partial L}{\partial x'}$$, i.e. the momentum is canonical)