How do I prove this? (summation problem)

  • Thread starter Thread starter Gridvvk
  • Start date Start date
AI Thread Summary
The discussion centers on proving the inequality $$\sum_{i=1}^{n} x_i^2 > \frac{1}{n^2}(\sum_{i=1}^{n} x_i)^2$$ for any real observations x_i, with n being an integer greater than 1. Initial attempts involved manipulating the inequality and exploring the Cauchy-Schwartz inequality. By applying Cauchy-Schwartz with y_i set to 1, the participants derived that $$n \sum_{i=1}^{n} x_i^2$$ is indeed greater than $$\sum_{i=1}^{n} x_i^2$$, confirming the original inequality. The proof successfully demonstrates the validity of the inequality under the given conditions.
Gridvvk
Messages
54
Reaction score
1
$$\sum_{i=1}^{n} x_i^2 > \frac{1}{n^2}(\sum_{i=1}^{n} x_i)^2$$

Note: each x_i is any observation (or statistic) it can be any real number and need not be constrained in anyway whatsoever, though you can take n > 1 and integer (i.e. there is at least two observations and the number of observations is discrete).

I'm not sure if this true or not, but part of my analysis to a particular problem assumed this was true, and I'm trying to prove it is indeed true (it seems to be case for any examples I come up with).

So far I came up with,
$$n^2 \sum_{i=1}^{n} x_i^2 > \sum_{i=1}^{n} x_i^2 + 2\sum_{i \neq j, i > j} x_ix_j$$
$$(n^2 - 1)\sum_{i=1}^{n}x_i^2 > 2\sum_{i \neq j,\: i > j} x_ix_j$$

and I'm not sure how to proceed from there.
 
Mathematics news on Phys.org
Are you familiar with the Cauchy-Schwartz inequality?
 
micromass said:
Are you familiar with the Cauchy-Schwartz inequality?

Yes I am, but I'm not sure how to use it here. If I was interested in both a x_i and y_i then I would see how to use it here, but here I'm only looking at a x_i.
 
Gridvvk said:
Yes I am, but I'm not sure how to use it here. If I was interested in both a x_i and y_i then I would see how to use it here, but here I'm only looking at a x_i.

Maybe take all ##y_i = 1##?
 
  • Like
Likes 1 person
micromass said:
Maybe take all ##y_i = 1##?

Hmm. Alright then by Cauchy-Schwartz I can say,

$$(\sum_{i=1}^{n} x_i \times 1)^2 \le (\sum_{i=1}^{n}x_i^2) (\sum_{i=1}^{n}1) = n\sum_{i=1}^{n}x_i^2 < n^2 \sum_{i=1}^{n}x_i^2$$

Which was what I wanted.

Thanks!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top