MHB How do I solve for a_3 in a complex Fourier series?

AI Thread Summary
The discussion focuses on solving for the fourth coefficient, a_3, in a discrete time Fourier series where the existing coefficients are given as {3, 1-2j, -1, ?}. The user seeks assistance in determining both the real and imaginary parts of a_3. A proposed method involves rewriting the equation to isolate a_3, leading to the expression a_3 = [sum - (1-2j)e^(jπ/2n) - 3 - (-1)^(n+1)]e^(jπ/2n). Clarification is requested regarding the known value of "sum" that the equation should equal. The conversation emphasizes the need for a complete equation to effectively solve for a_3.
Tan Thom
Messages
3
Reaction score
0
Good morning,

I am working on a problem where I am finding the 4th Coefficient in a sample of 4 discrete time Fourier Series coefficients. I got the sum but now I have to solve for a_3 which consists of a real and imaginary part. Any assitance on how to solve for the a_3? Thank you.

$a_k = \{3, 1-2j, -1, ?\}$

Step 1: $(1-2j)e^{j*.5\pi*n} +a_3 e ^ {-(j*.5\pi*n)} + 3 + (-1)^{n+1} $

Step 2: $[(1-2j)(\cos \frac\pi2 n + j \sin \frac\pi2n) + a_3 (\cos \frac\pi2n-j \sin \frac\pi2n)]$
 
Last edited by a moderator:
Mathematics news on Phys.org
Tan Tom said:
Good morning,

I am working on a problem where I am finding the 4th Coefficient in a sample of 4 discrete time Fourier Series coefficients. I got the sum but now I have to solve for a_3 which consists of a real and imaginary part. Any assitance on how to solve for the a_3? Thank you.

$a_k = \{3, 1-2j, -1, ?\}$

Step 1: $(1-2j)e^{j*.5\pi*n} +a_3 e ^ {-(j*.5\pi*n)} + 3 + (-1)^{n+1} $

Step 2: $[(1-2j)(\cos \frac\pi2 n + j \sin \frac\pi2n) + a_3 (\cos \frac\pi2n-j \sin \frac\pi2n)]$

Hi Tan Tom, welcome to MHB! ;)

If I understand correctly, you have
$$(1-2j)e^{j\frac\pi 2 n} +a_3 e ^ {-(j\frac\pi 2n)} + 3 + (-1)^{n+1}=sum$$
for some known $sum$.

We can rewrite it as:
$$a_3 e ^ {-(j\frac\pi 2 n)}=sum-(1-2j)e^{j\frac \pi 2n} - 3 - (-1)^{n+1}\\
a_3 =\big[sum-(1-2j)e^{j\frac \pi 2n} - 3 - (-1)^{n+1}\big]e ^ {j\frac\pi 2 n}$$
Is that what you're looking for, or am I misunderstanding something?
 
Before you can "solve" you have to have an equation! What is that supposed to be equal to? Klaas van Aarsen is assuming it is to be equal to some number he is calling "sum". Is that correct?
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top