How Do Induced Electric Fields Relate to Gauss' and Lenz's Laws?

AI Thread Summary
In electrostatics, the electric field (E) is conservative, with sources from electrical charges as described by Gauss' Law. However, when the magnetic field (B) changes over time, the relationship shifts, leading to a non-conservative electric field where E lines have no defined start or end. This is due to the equation ∇ × E = -∂B/∂t, indicating that the induced electric field is related to the changing magnetic field. Lenz's Law further clarifies that the electromotive force (ε) induced is opposite to the change in B. Thus, the induced electric field lines are indeed analogous to B lines in magnetostatics, turning around the source without originating from or terminating at any charge.
lighhhtworks
Messages
1
Reaction score
0
In electrostatics, × E = 0 so E that is a conservative field and there must be sources of E from which E flows. We know that this sources are the electrical charges given by Gauss' Law.

But when B changes in time, × E = - ∂ B / ∂t. Now the Gauss' Law no longer applies and if there are not net charges anywhere, there are no sources of E, so ∇ ⋅ E = 0.

So how are the lines of an induced E? Are they like B lines in magnetostatics? They just "turn" around something and they don't have any start or end?
And if they are, since Lenz's Law says that ε = - ∂φ / ∂t, are the lines of this E induced exactly the opposite of the B that induces it?

Please let me know if I'm not making my self clear, my english is not that good.
Thanks in advance!
 
Physics news on Phys.org
Welcome to PF!

lighhhtworks said:
In electrostatics, × E = 0 so E that is a conservative field and there must be sources of E from which E flows. We know that this sources are the electrical charges given by Gauss' Law.

But when B changes in time, × E = - ∂ B / ∂t. Now the Gauss' Law no longer applies and if there are not net charges anywhere, there are no sources of E, so ∇ ⋅ E = 0.

So how are the lines of an induced E? Are they like B lines in magnetostatics? They just "turn" around something and they don't have any start or end?
And if they are, since Lenz's Law says that ε = - ∂φ / ∂t, are the lines of this E induced exactly the opposite of the B that induces it?

Yes, without charges, but with changing magnetic field, the electric field lines have neither start nor end. But Lenz's Law states that the electromotive force ε is exactly opposite to the change of B that induces it. The time-dependent B is related to the curl of the electric field: curl E = -∂B / ∂t, or in integral form: ## \oint Eds = -\partial φ / \partial t ## (the line integral of the tangential component along a closed curve is equal to the negative of the flux across the enclosed area).
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top