I How Do Magnetic Forces Differ Between Magnets and Wires?

AI Thread Summary
The discussion centers on the differences in magnetic interactions between magnets and current-carrying wires. It explains that iron filings align with magnetic field lines due to their magnetic moments, experiencing torque that aligns them with the field. The force between magnets acts along the magnetic field lines, while the force between two wires is perpendicular due to the Lorentz force, which depends on the velocity and magnetic field direction. The key distinction lies in the magnetic field gradient; for magnets, the force aligns with the gradient, whereas for wires, the field is azimuthal and the gradient is radial. Understanding these differences clarifies the apparent contradiction in magnetic force directions.
nemuritai
Messages
2
Reaction score
0
I understand the iron fillings become little magnets all pointing in the same north south direction similar to the spin aligned electrons in the permanent magnet.
Similarly, a compass near a wire traces out the magnetic field lines ie North/South.

My question is how do I reconcile the fact that the force of a magnet on another magnet is along the field lines whereas for two wires it is perpendicular? The latter is from the fact that the lorentz force is perpendicular to v and B, but why is the force of two magnets alongside the magnetic field instead of perpendicular?

Is the force alongside the B field in one and perpendicular in the other? What error have I made? Magnetic_field_of_bar_magnets_attracting.png
 
Physics news on Phys.org
An iron filing has a magnetic moment that experiences a torque that rotates it so that its long axis lines up with the local field lines. The force on it is along the direction of the magnetic field gradient which is not necessarily along the local field lines. In the case of the bar magnets that you show in the photo, the magnetic field and its gradient are roughly in the same direction. In the case of the infinite wire the magnetic field is in the azimuthal direction but its gradient is in the radial direction.
 
  • Like
Likes vanhees71 and nemuritai
Consider an extremely long and perfectly calibrated scale. A car with a mass of 1000 kg is placed on it, and the scale registers this weight accurately. Now, suppose the car begins to move, reaching very high speeds. Neglecting air resistance and rolling friction, if the car attains, for example, a velocity of 500 km/h, will the scale still indicate a weight corresponding to 1000 kg, or will the measured value decrease as a result of the motion? In a second scenario, imagine a person with a...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Back
Top