- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Cool)
I want to find the Taylor series of $f(x)=\arctan(x), x \in [-1,1], \xi=0$
$$f'(x)=\frac{1}{1+x^2}$$
According to my notes:
$$\frac{1-(-t^2)^n}{1+t^2}=1-t^2+ \dots + (-1)^{n-1} t^{2n-2}$$
So, $\frac{1}{1+t^2}=1-t^2+ \dots +(-1)^{n-1}t^{2n-2}+\frac{(-t^2)^n}{1+t^2} \Rightarrow \int_0^x \frac{1}{1+t^2}=\int_0^x [1-t^2+ \dots +(-1)^{n-1}t^{2n-2}]dt+\int_0^x \frac{(-t^2)^n}{1+t^2} dt $
Then,they find that $\arctan(x)=x-\frac{x^3}{3}+ \dots + (-1)^{n-1} \frac{1}{2n-1} x^{2n-2}+ \int_0^x \frac{(-t^2)^n}{1+t^2}dt$
Then,to check if $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n-1}$ is the right Taylor series, they check if $\int_0^x \frac{(-t^2)^n}{1+t^2}dt \to 0$.
Firstly, how do we get this relation: $$\frac{1-(-t^2)^n}{1+t^2}=1-t^2+ \dots + (-1)^{n-1} t^{2n-2}$$ ?
Also, why do we check if $\int_0^x \frac{(-t^2)^n}{1+t^2}dt \to 0$,to see if we found the right power series or not??
I want to find the Taylor series of $f(x)=\arctan(x), x \in [-1,1], \xi=0$
$$f'(x)=\frac{1}{1+x^2}$$
According to my notes:
$$\frac{1-(-t^2)^n}{1+t^2}=1-t^2+ \dots + (-1)^{n-1} t^{2n-2}$$
So, $\frac{1}{1+t^2}=1-t^2+ \dots +(-1)^{n-1}t^{2n-2}+\frac{(-t^2)^n}{1+t^2} \Rightarrow \int_0^x \frac{1}{1+t^2}=\int_0^x [1-t^2+ \dots +(-1)^{n-1}t^{2n-2}]dt+\int_0^x \frac{(-t^2)^n}{1+t^2} dt $
Then,they find that $\arctan(x)=x-\frac{x^3}{3}+ \dots + (-1)^{n-1} \frac{1}{2n-1} x^{2n-2}+ \int_0^x \frac{(-t^2)^n}{1+t^2}dt$
Then,to check if $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} x^{2n-1}$ is the right Taylor series, they check if $\int_0^x \frac{(-t^2)^n}{1+t^2}dt \to 0$.
Firstly, how do we get this relation: $$\frac{1-(-t^2)^n}{1+t^2}=1-t^2+ \dots + (-1)^{n-1} t^{2n-2}$$ ?
Also, why do we check if $\int_0^x \frac{(-t^2)^n}{1+t^2}dt \to 0$,to see if we found the right power series or not??