MHB How do we get the approximation?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Approximation
AI Thread Summary
The discussion focuses on approximating the derivative \( y'(t^n) \) using different methods, specifically the forward and backward Euler methods. The forward Euler method is derived from the difference quotient \( \frac{y(t^{n+1}) - y(t^n)}{h} \), while the backward Euler method uses \( \frac{y(t^n) - y(t^{n-1})}{h} \). There is a debate about whether to choose \( h \) as negative for the backward method, with a consensus that \( h \) should remain positive. The iterative process to find \( y(t^n) \) starts with an initial estimate and updates using \( y_{n}^{[i+1]} = y(t^{n-1}) + h f(t_{n}, y_{n}^{[i]}) \). This approach emphasizes the necessity of iteration to accurately approximate the derivative.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Approximating $y'(t^n)$ at the relation $y'(t^n)=f(t^n,y(t^n))$ with the difference quotient $\left[\frac{y(t^{n+1})-y(t^n)}{h} \right]$ we get to the Euler method.

Approximating the same derivative with the quotient $\left[\frac{y(t^{n})-y(t^{n-1})}{h} \right]$ we get to the backward Euler method

$$y^{n+1}=y^n+hf(t^{n+1},y^{n+1}), n=0, \dots, N-1$$

where $y^0:=y_0$.
In order to find the formula for the forward Euler method, we use the limit $\lim_{h \to 0} \frac{y(x_0+h)-y(x_0)}{h}$ for $x_0=t^n, h=t^{n+1}-t^n$.
In order to find the formula for the backward Euler method, could we pick $h=t^{n-1}-t^n$ although it is negative?Or how do we get otherwise to the approximation:$$y'(t^n) \approx \frac{y(t^n)-y(t^{n-1})}{h}$$

?
 
Mathematics news on Phys.org
evinda said:
In order to find the formula for the backward Euler method, could we pick $h=t^{n-1}-t^n$ although it is negative?

Or how do we get otherwise to the approximation:

$$y'(t^n) \approx \frac{y(t^n)-y(t^{n-1})}{h}$$

?

Hi! (Wave)

We should still pick $h$ positive.
I previously explained to http://mathhelpboards.com/members/mathmari/ how to find that derivative in this thread. (Thinking)
 
I like Serena said:
Hi! (Wave)

We should still pick $h$ positive.
I previously explained to http://mathhelpboards.com/members/mathmari/ how to find that derivative in this thread. (Thinking)

Could you explain it further to me? (Thinking)
 
evinda said:
Or how do we get otherwise to the approximation:

$$y'(t^n) \approx \frac{y(t^n)-y(t^{n-1})}{h}$$

?

evinda said:
Could you explain it further to me? (Thinking)

Since we don't know $y(t^n)$ yet, we need to iterate to find it. (Thinking)

We start with an initial estimate:
$$y_n^{[0]} = y(t^{n-1})$$
And then we can iterate with:
$$y_{n}^{[i+1]} = y(t^{n-1}) + h f(t_{n}, y_{n}^{})$$
(Wasntme)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top