- #1
mathmari
Gold Member
MHB
- 5,049
- 7
Hey!
How could we prove the following rule for differentiable curves in $\mathbb{R}^3$ ?? (Wondering)
$$\frac{d}{dt}[\overrightarrow{\sigma}(t)\times \overrightarrow{\rho}(t)]=\frac{d\overrightarrow{\sigma}}{dt}\times \overrightarrow{\rho}(t)+\overrightarrow{\sigma}(t)\times \frac{d\overrightarrow{\rho}}{dt}$$
How could we prove the following rule for differentiable curves in $\mathbb{R}^3$ ?? (Wondering)
$$\frac{d}{dt}[\overrightarrow{\sigma}(t)\times \overrightarrow{\rho}(t)]=\frac{d\overrightarrow{\sigma}}{dt}\times \overrightarrow{\rho}(t)+\overrightarrow{\sigma}(t)\times \frac{d\overrightarrow{\rho}}{dt}$$