MHB How do we show that $L$ is diagonalizable?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: Let $V$ be the vector space of continuous functions with basis $\{e^t,e^{-t}\}$. Let $L:V\rightarrow V$ be defined by $L(g(t)) = g^{\prime}(t)$ for $g(t)\in V$. Show that $L$ is diagonalizable.

-----

 
Physics news on Phys.org
This question was correctly answered by Siron and Sudharaka. You can Sudharaka's solution below:

Take any \(g(t)\in V\). Then,

\[g(t)=\alpha e^{t}+\beta e^{-t}\]

\[\Rightarrow g'(t)=\alpha e^{t}-\beta e^{-t}\]

Hence,

\[T\left(\begin{matrix} \alpha \\ \beta \end{matrix}\right)\rightarrow\left(\begin{matrix} \alpha \\ -\beta \end{matrix}\right)\]

Note that for each \(v=\left(\begin{matrix} \alpha \\ \beta \end{matrix}\right)\in V\)

\[\left(\begin{matrix} 1&0 \\ 0&-1 \end{matrix}\right)\left(\begin{matrix} \alpha \\ \beta \end{matrix}\right)=\left(\begin{matrix} \alpha \\ -\beta \end{matrix}\right)\]

The linear transformation \(T\) can be represented by a diagonal matrix with respect to the basis \(\{e^t,\,e^{-t}\}\). Hence \(T\) is diagonalizable.
 
Back
Top