- #1
93157
- 7
- 0
another for the EE pros out there
an isolated spherical capacitor has charge +Q on its inner conductor of radius r-sub-a and charge -Q on its outer conductor of radius r-sub-b. half of the volume between the two conductors is then filled with a liquid dielectric of constant K. a) find the capacitance of the half filled capacitor. b) find the magnitude of (electric field) E in th evolume between the two conductors as a function of the distance r from the center of the capacitor. give answers for both the upper and lower halves of this volume. c) find the surface density of free charge on the upper and lower halves of the inner and outer conductors. d) find the surface density of bound charge on the flat surface of the dielectric? e) what is the surface density of bound charge on the inner and outer surfaces of the dielectric.
it's mainly part a) that i can't figure out how to set up. like does Q vary across the surface of the sphere or is it uniformly spread?
thanks
an isolated spherical capacitor has charge +Q on its inner conductor of radius r-sub-a and charge -Q on its outer conductor of radius r-sub-b. half of the volume between the two conductors is then filled with a liquid dielectric of constant K. a) find the capacitance of the half filled capacitor. b) find the magnitude of (electric field) E in th evolume between the two conductors as a function of the distance r from the center of the capacitor. give answers for both the upper and lower halves of this volume. c) find the surface density of free charge on the upper and lower halves of the inner and outer conductors. d) find the surface density of bound charge on the flat surface of the dielectric? e) what is the surface density of bound charge on the inner and outer surfaces of the dielectric.
it's mainly part a) that i can't figure out how to set up. like does Q vary across the surface of the sphere or is it uniformly spread?
thanks