How Do You Calculate Forces on Charges Using Coulomb's Law?

AI Thread Summary
To calculate the forces on the charges using Coulomb's Law, one must apply the equation Fe=kq1q2/r^2 to determine the forces acting on each charge. For the -3 uC charge, the force from the +2 uC charge and the -5 uC charge must be calculated and summed to find the net force, which is approximately -0.55 N. The unit uC refers to micro-coulombs, not nano-coulombs, which is denoted as nC. A free-body diagram can aid in visualizing the forces and their directions. The discussion emphasizes the importance of careful calculation and understanding of charge interactions.
poohead
Messages
34
Reaction score
0

Homework Statement



three point charges are placed at the following points on the x-axis +2 uC at x=0, -3uC at x=40 cm, -5 uC at x=120 cm. find the force (a) on the -3 uC charge, (b) on the -5 uC charge

ans. (a) -0.55N ; (b) 0.15 N


uC=nano coulomb


Homework Equations



Fm=qvB ?

Fe=|E|(q)?

Fe=kq1q2/r^2

The Attempt at a Solution



I cannot seem to solve such a simple problem, i need sufficient help. I have the idea that it has something to do with minusing each Fe charge by each other but I am uncertain please need help with a solution
 
Physics news on Phys.org
poohead said:
I cannot seem to solve such a simple problem, i need sufficient help. I have the idea that it has something to do with minusing each Fe charge by each other but I am uncertain please need help with a solution

You'll use the 3rd equation, and you will sum the forces. For instance, for the -3 nC charge, you will have to figure out the force created by the +2 nC Charge, then for the -5 nC charge. Once you get those two numbers, just add them together.
 
but wait, try it for yourself, apparently you don't get the given answer of -0.55 N, what is the answer u thus get?
 
Well, I didn't get -0.55 N exactly, but I did get -0.5479 N. Which is close enough. I came to this solution saying the uC is actually micro-coulombs. Usually nano-coulombs is denoted nC, and if you don't want to go into LaTex, microcoulombs is uC. This is because u is close enough to the Greek Letter mu.

A few more hints on this problem... Draw a free-body diagram. Then think about what "should" be happening, like which direction a force should go.
 
got it
now I am trying part b
thanks man
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top