How Do You Correctly Cancel Angular Momentum in Physics Problems?

  • Thread starter Thread starter pbnj
  • Start date Start date
  • Tags Tags
    Angular momentum
AI Thread Summary
To correctly cancel angular momentum in physics problems, one must calculate the maximum height using the appropriate equations, noting that at this height, the velocity is purely horizontal. The angular momentum from translation is derived from the position and momentum, while the moment of inertia for a sphere is used to find its angular momentum due to spin. Setting the total angular momentum to zero allows for the calculation of the spin rate, which, based on the provided parameters, results in a spin of approximately 1440.82 rad/s. Despite the calculations appearing correct, there are concerns about discrepancies with course feedback, suggesting potential changes in the course material over time. This highlights the importance of verifying calculations against updated course standards or guidelines.
pbnj
Messages
5
Reaction score
0
Homework Statement
A ball with mass ##m## and diameter ##D## is thrown with speed ##v## at an angle ##\theta## with the horizontal from a height ##h_i##. How much spin (in rad/s) must the thrower impart on the ball so that at its maximum height, it has no angular momentum with respect to a point on the ground directly beneath the ball?
Relevant Equations
##v_f^2 = v_i^2 + 2a\Delta h##
##L = I\omega##
##L = \vec r \times \vec p##
First, we calculate the maximum height using the first equation, noting that at maximum height, the velocity is purely horizontal with speed ##v\cos\theta##, and with initial vertical speed ##v\sin\theta##:

$$
\begin{align}
v_f^2 &= v_i^2 - 2g(h_f - h_i) \\
0 &= (v\sin\theta)^2 - 2g(h_f - h_i) \\
h_f &= \frac{(v\sin\theta)^2}{2g} + h_i
\end{align}
$$

The angular momentum from translation is given by ##L_t = \vec r \times \vec p = h_f\hat j \times mv\cos\theta\hat i = -h_fmv\cos\theta\hat k##. The moment of inertia of a sphere is ##I = \frac 2 5 mR^2## where ##R = \frac D 2##, and its angular momentum due to spin is ##L_s = I\omega##.

We need these to cancel, so

$$
\begin{align}
L_t + L_s &= 0 \\
-h_fmv\cos\theta + \frac 2 5 mR^2\omega &= 0 \\
\omega &= \frac{h_fmv\cos\theta}{\frac 2 5 mR^2} \\
&= \frac{5h_fv\cos\theta}{2R^2}
\end{align}
$$

The problem uses ##m = 625g##, ##D = 22.9cm##, ##\theta = 45^\circ##, ##v=5m/s## and ##h_i = 1.5m##. Using these values I get a spin of about ##1440.82##, in rad/s.
 
Physics news on Phys.org
Your answer agrees with mine.
 
pbnj said:
Using these values I get a spin of about 1440.82, in rad/s.
Have you a reason to doubt it?
 
haruspex said:
Have you a reason to doubt it?
It's for a Coursera course, and it tells me it's incorrect. I've tried incrementing/decrementing my answer by 5 a few times, I tried using 2 sigfigs for everything, I tried assuming "diameter" meant "radius," but no luck. On the discussion forum there are no questions about this particular answer (the course is 3 years old, and it doesn't seem like new posts get replies). If my approach is correct and my calculations are correct, I can only assume something in the backend changed in the 3 years between then and now.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top