- #1
Logarythmic
- 281
- 0
Consider the time-dependent Hamiltonian
[tex]H(q,p;t) = \frac{p^2}{2m \sin^2{(\omega t})} - \omega pq \cot{(\omega t)} - \frac{m}{2} \omega^2 \sin^2{(\omega t)} q^2[/tex]
with constant m and [tex]\omega[/tex].
Find a corresponding Lagrangian [tex]L = L(q,\dot{q};t)[/tex]
Ok, I know that the Hamiltonian is given by
[tex]H(q,p;t) = \dot{q}p - L(q, \dot{q};t)[/tex]
where
[tex]p = \frac{\partial L}{\partial \dot{q}}[/tex]
Is it as easy as
[tex]L(q, \dot{q};t) =\dot{q}p - H(q,p;t)[/tex]?
And how do I get rid of the p's?
[tex]H(q,p;t) = \frac{p^2}{2m \sin^2{(\omega t})} - \omega pq \cot{(\omega t)} - \frac{m}{2} \omega^2 \sin^2{(\omega t)} q^2[/tex]
with constant m and [tex]\omega[/tex].
Find a corresponding Lagrangian [tex]L = L(q,\dot{q};t)[/tex]
Ok, I know that the Hamiltonian is given by
[tex]H(q,p;t) = \dot{q}p - L(q, \dot{q};t)[/tex]
where
[tex]p = \frac{\partial L}{\partial \dot{q}}[/tex]
Is it as easy as
[tex]L(q, \dot{q};t) =\dot{q}p - H(q,p;t)[/tex]?
And how do I get rid of the p's?