How do you visualise the atomic orbitals?

In summary, visualizing atomic orbitals involves representing the probability distributions of electrons around an atom's nucleus. This is typically done using three-dimensional shapes, such as spheres for s-orbitals, dumbbell shapes for p-orbitals, and more complex forms for d and f orbitals. These shapes illustrate regions where there is a high likelihood of finding an electron, often depicted using contour plots or 3D models. Additionally, software tools can simulate these orbitals to enhance understanding of their spatial orientation and energy levels.
  • #1
Nethrz
4
4
I do know the shapes of the individual orbitals but as a whole, I'm confused as to how to visualise their positions...Also how can we predict the trajectory of an electron or can it not be predicted because of Heisenberg's uncertainty principle
 
Chemistry news on Phys.org
  • #2
Orbitals represent stationary states, i.e., states that do not change with time. You cannot talk about the trajectory of an electron in an orbital, only the probability that it will be found at a certain position around the nucleus.

For the purposes of chemistry, I think it is best to see it as the electron being spread out over the orbital. It is a classical picture that is not completely correct, but useful.
 
  • Like
Likes Astronuc, DeBangis21, Nethrz and 2 others
  • #3
You could imagine orbitals on different levels with increasing complexity and correctness

First would be bohr orbitals, which are the circular orbital energy shells K,L,M,N and so on where 2,8,8,18,32...goes on

Second would be SPDF configuration where orbitals are basically a certain region where probability of finding the electron is.For example the probability of finding a electron in S orbital is maximum at the centre and minimum at the edges .For P orbital a node comes in play where the probability of finding a electron is 0 and it is maximum as we go farther away but not too far away outside the orbital.Similarly for D, F etc. It is given by a probability distribution function which gives us this information

You can view this here at falstad :
https://www.falstad.com/qmmo/

All the other things about the electron are derived from the schrödinger equation except the spin quantum number. Principal quantum number tells you which energy level it lies on i.e n=1,2,3....and so on . Azimuthal quantum number tells you the orbital i.e S,P,D or F and .Magnetic quantum number tells you the subshell i.e the subshell of orbital in different axis like P(x),P(y) and P(z) .Spin quantum number tells you the spin of electron i.e +1/2 or -1/2.
As for the positions of the orbitals they overlap on and into each other creating concentric shapes which hold the electrons(according to spdf model) even if you dont understand this go to the falstad link above to visualise it ,it gives you a 3d model along with probability density
 
  • Like
Likes DeBangis21 and Nethrz
  • #4
  • Like
Likes pinball1970
  • #5
  • Like
Likes pinball1970, PhysicsEnjoyer31415 and berkeman
Back
Top