- #141
PAllen
Science Advisor
- 9,217
- 2,445
pervect said:Taking a large, hollow sphere, and counting the number of smaller spheres you can pack into it, to measure it's volume, would (at least in principle) give you a measure of spatial curvature. But it wouldn't give a measure of space-time curvature, it would measure the spatial curvature of some particular spatial slice.
I think that's what was wanted, though I haven't been following in detail and the thread is too long to try and catch up.
Another minor issue is that the Riemann of a plane only has 1 component, but the Riemann of a three-space should have 3. So the circle-packing tells us as much as we can know about the curvature of a plane, but sphere-packing doesn't tell us everything about the curvature of some particular spatial slice.
Well I was interested in something intrinsic. I see no reason you can't construct a non-euclidean spacelike 3-surface in Minkowski flat spacetime. What would be the physical significance of that? Whereas, with spacetime curvature present, while you can generally find a flat 2-surface, you cannot find a flat 3-surface (a while back I opened a thread on embedding like this, and determined this based on number of coordinate conditions that can be imposed on a metric). So, to have real meaning, the condition to look for isn't ability to find a curved spatial slice; instead, it is inability to find a flat one.
Separately, I don't know if every 3-surface with non-vanishing Riemann tensor must deviate from the Euclidean sphere area/volume ratio. Have you determined that this is true?