How Does Momentum Conservation Apply in Nuclear Disintegration?

AI Thread Summary
The discussion centers on applying the conservation of momentum to a nuclear disintegration scenario involving three particles. The initial calculations incorrectly assumed that the final velocity of the third particle could be derived by simply summing the components of the other two particles. Participants emphasize the need to treat velocity as a vector quantity, requiring proper vector addition to find the resultant velocity. The correct approach involves calculating the components separately and then using the Pythagorean theorem to determine the magnitude of the third particle's velocity. Ultimately, the correct magnitude of the third particle's velocity is identified as 1.27 x 10^7 m/s, highlighting the importance of vector analysis in momentum conservation problems.
riseofphoenix
Messages
294
Reaction score
2
Conservation of Momentum?

An unstable nucleus of mass 2.7 x 10-26 kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of m1 = 1.0 x 10-26 kg, moves in the positive y-direction with speed v1 = 4.8 x 106 m/s. Another particle, of mass m2 = 1.2 x 10-26 kg, moves in the positive x-direction with speed v2 = 3.6 x 106 m/s. Find the magnitude and direction of the velocity of the third particle.

Magnitude: ______ m/s
Direction: ______ ° counterclockwise from the +x-axis

This is what I did...

1) M = m1 + m2 + m3

(2.7 x 10-26) = (1.0 x 10-26) + (1.2 x 10-26) + m3
(2.7 x 10-26) - (1.0 x 10-26) - (1.2 x 10-26) = m3
5.0 x 10-27 = m3

2) Determine your systems

1st particle:
m1 = 1.0 x 10-25 kg
vinitial = 0 m/s
v1final = 4.8 x 106 m/s

2nd particle:
m2 = 1.2 x 10-26 kg
vinitial = 0 m/s
v2final = 3.6 x 106 m/s

3rd particle:
m3 = 5.0 x 10-27 kg
Vinitial = 0 m/s
V3final = ? m/s

3) Conservation of momentum equation

pinitial = pfinal

m1vinitial + m2vinitial + m3vinitial = m1v1final + m2v2final + m3v3final
(m1)(0) + (m2)(0) + (m3)(0) = (1.0 x 10-25)(4.8 x 106) + (1.2 x 10-26)(3.6 x 106) + (5.0 x 10-27)(v3final)
0 = (4.8 x 10-20) + (4.32 x 10-20) + (5.0 x 10-27)(v3final)
-(9.12 x 10-20) = (5.0 x 10-27)(v3final)
-18240000 = v3final
-1.82e+07 = v3final

"INCORRECT. CORRECT ANSWER IS: 1.27e+07"

I don't understand! How did they get 1.27e+07? Help!
 
Physics news on Phys.org


riseofphoenix said:
An unstable nucleus of mass 2.7 x 10-26 kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of m1 = 1.0 x 10-26 kg, moves in the positive y-direction with speed v1 = 4.8 x 106 m/s. Another particle, of mass m2 = 1.2 x 10-26 kg, moves in the positive x-direction with speed v2 = 3.6 x 106 m/s. Find the magnitude and direction of the velocity of the third particle.

Magnitude: ______ m/s
Direction: ______ ° counterclockwise from the +x-axis

This is what I did...

1) M = m1 + m2 + m3

(2.7 x 10-26) = (1.0 x 10-26) + (1.2 x 10-26) + m3
(2.7 x 10-26) - (1.0 x 10-26) - (1.2 x 10-26) = m3
5.0 x 10-27 = m3

2) Determine your systems

1st particle:
m1 = 1.0 x 10-25 kg
vinitial = 0 m/s
v1final = 4.8 x 106 m/s

2nd particle:
m2 = 1.2 x 10-26 kg
vinitial = 0 m/s
v2final = 3.6 x 106 m/s

3rd particle:
m3 = 5.0 x 10-27 kg
Vinitial = 0 m/s
V3final = ? m/s

3) Conservation of momentum equation

pinitial = pfinal

m1vinitial + m2vinitial + m3vinitial = m1v1final + m2v2final + m3v3final
(m1)(0) + (m2)(0) + (m3)(0) = (1.0 x 10-25)(4.8 x 106) + (1.2 x 10-26)(3.6 x 106) + (5.0 x 10-27)(v3final)
0 = (4.8 x 10-20) + (4.32 x 10-20) + (5.0 x 10-27)(v3final)
-(9.12 x 10-20) = (5.0 x 10-27)(v3final)
-18240000 = v3final
-1.82e+07 = v3final

"INCORRECT. CORRECT ANSWER IS: 1.27e+07"

I don't understand! How did they get 1.27e+07? Help!
Velocity and momentum are vector quantities.

You need to keep track of vector components.
 


SammyS said:
Velocity and momentum are vector quantities.

You need to keep track of vector components.

I STILL get the same answer though...

0 = (4.8 x 10-20) + (4.32 x 10-20) + (5.0 x 10-27)(v3final)

x component


0 = [STRIKE](4.8 x 10-20)[/STRIKE] + (4.32 x 10-20) + (5.0 x 10-27)(v3final)
0 = (4.32 x 10-20) + (5.0 x 10-27)(v3final)
-(4.32 x 10-20) = (5.0 x 10-27)(v3final)
-(4.32 x 10-20)/(5.0 x 10-27) = v3final
-8.64 x 106= v3final in the x direction

y component


0 = (4.8 x 10-20) + [STRIKE](4.32 x 10-20)[/STRIKE] + (5.0 x 10-27)(v3final)
0 = (4.8 x 10-20) + (5.0 x 10-27)(v3final)
-(4.8 x 10-20) = (5.0 x 10-27)(v3final)
-(4.8 x 10-20)/(5.0 x 10-27) = v3final
-9.6 x 106 = v3final in the y direction

Add vectors

-8.64 x 106 - 9.6 x 106 = -18240000 = -1.82 x 10^7 m/s

-____-
 


riseofphoenix said:
Add vectors

-8.64 x 106 - 9.6 x 106 = -18240000 = -1.82 x 10^7 m/s
How do you find the magnitude of a vector given its components? (You don't just add the components!)
 


Doc Al said:
How do you find the magnitude of a vector given its components? (You don't just add the components!)

But I just did!
 


Yeah, he's saying it's wrong to just add the components.

Consider the vector and it's components as a triangle (I assume you're familiar with this representation). You're trying to the find the length of the hypotenuse.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top