How Does Pulling a Chain Affect Its Thermal Energy?

AI Thread Summary
Pulling a chain of metal links with a mass of 7 kg and applying a force of 52 N results in a speed of 6.45 m/s when fully extended. The total work done on the chain while pulling it a distance of 3.2 m is calculated to be 166.4 joules. As the chain straightens, the links collide, increasing the thermal energy of the chain, although the exact increase in thermal energy is not provided due to a lack of temperature and heat capacity data. The discussion highlights the relationship between work done, kinetic energy, and thermal energy, indicating that not all work contributes to kinetic energy. The remaining energy must be accounted for as thermal energy resulting from the collisions of the chain links.
soccerguy
Messages
2
Reaction score
0

Homework Statement


A chain of metal links with total mass m = 7 kg is coiled up in a tight ball on a low-friction table. You pull on a link at one end of the chain with a constant force F = 52 N. Eventually the chain straightens out to its full length L = 0.8 m, and you keep pulling until you have pulled your end of the chain a total distance d = 3.2 m (diagram is not to scale).

(a) Consider the point particle system:
What is the speed of the chain at this instant?
v = 6.45 m/s>

(b) Consider the real system:
What is the change in energy of the chain?
166.4 joules

(c) In straightening out, the links of the chain bang against each other, and their temperature rises. Assume that the process is so fast that there is insufficient time for significant thermal transfer of energy from the chain to the table, and ignore the small amount of energy radiated away as sound produced in the collisions among the links.
Calculate the increase in thermal energy of the chain.
= J

Homework Equations


v = sqrt(2 * F * xcm / M)
w = F * d

The Attempt at a Solution


I calculated the velocity using the v formula with xcm being the change in the center of mass, so 2.8 in my case, and then part (b) by doing 52 * 3.2 since that's how far your hand moved. However, I have no clue how to do thermal energy without a temperature and heat capacity, and my book makes no mention.
 
Physics news on Phys.org
Hello Soccerguy,

Welcome to Physics Forums!
soccerguy said:
I calculated the velocity using the v formula with xcm being the change in the center of mass, so 2.8 in my case, and then part (b) by doing 52 * 3.2 since that's how far your hand moved. However, I have no clue how to do thermal energy without a temperature and heat capacity, and my book makes no mention.
(i) What is the kinetic energy of the chain (based on its velocity)?
(ii) What is the total work done on the chain? (Hint: you've already solved this in part b)
(iii) What's the difference between the total work done, and the kinetic energy of the chain?

If not all the work done went into the chain's kinetic energy, and there wasn't a change in potential energy, the remainder must have become what kind of energy...? :wink:
 
Sweet thank you :)
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top