- #1
back2square1
- 13
- 0
[itex]L[sin(at)]=\frac{a}{s^{2}+a^{2}}, Re>0[/itex]
[itex]L[e^{kt}]=\frac{1}{s-k}, s>k[/itex]
[itex]L[e^{-kt}]=\frac{1}{s+k}, s<-k[/itex]
[itex]L[sin(at)]=\frac{1}{2i}L[e^{iat}-e^{-iat}][/itex]
[itex]=\frac{1}{2i}L[e^{iat}]-L[e^{-iat}][/itex]
Using the above relations
[itex]=\frac{1}{2i}[\frac{1}{s-ia}-\frac{1}{s+ia}], s>ia, s<-ia[/itex]
The problem is that I don't understand, how s>ia and s<-ia could imply that Real part of s>0?
[itex]L[e^{kt}]=\frac{1}{s-k}, s>k[/itex]
[itex]L[e^{-kt}]=\frac{1}{s+k}, s<-k[/itex]
[itex]L[sin(at)]=\frac{1}{2i}L[e^{iat}-e^{-iat}][/itex]
[itex]=\frac{1}{2i}L[e^{iat}]-L[e^{-iat}][/itex]
Using the above relations
[itex]=\frac{1}{2i}[\frac{1}{s-ia}-\frac{1}{s+ia}], s>ia, s<-ia[/itex]
The problem is that I don't understand, how s>ia and s<-ia could imply that Real part of s>0?