- #1
alexmahone
- 304
- 0
If $c>0$, prove that
$\sup cA=c\sup A$ and $\inf cA=c\inf A$
My proof:
$x\le\sup A$ for all $x\in A$.
$cx\le c\sup A$ for all $x\in A$ ie $x\le c\sup A$ for all $x\in cA$. ------ (1)
$x\le b$ for all $x\in A\implies\sup A\le b$
$cx\le cb$ for all $x\in A\implies c\sup A\le cb$
$x\le cb$ for all $x\in cA\implies c\sup A\le cb$ ------ (2)
From (1) and (2), we see that $\sup cA=c\sup A$.
-------------------------------------------------------------------
$x\ge\inf A$ for all $x\in A$.
$cx\ge c\inf A$ for all $x\in A$ ie $x\ge c\inf A$ for all $x\in cA$. ------ (3)
$x\ge b$ for all $x\in A\implies\inf A\ge b$
$cx\ge cb$ for all $x\in A\implies c\inf A\ge cb$
$x\ge cb$ for all $x\in cA\implies c\inf A\ge cb$ ------ (4)
From (3) and (4), we see that $\inf cA=c\inf A$.
-------------------------------------------------------------------
Is that ok?
$\sup cA=c\sup A$ and $\inf cA=c\inf A$
My proof:
$x\le\sup A$ for all $x\in A$.
$cx\le c\sup A$ for all $x\in A$ ie $x\le c\sup A$ for all $x\in cA$. ------ (1)
$x\le b$ for all $x\in A\implies\sup A\le b$
$cx\le cb$ for all $x\in A\implies c\sup A\le cb$
$x\le cb$ for all $x\in cA\implies c\sup A\le cb$ ------ (2)
From (1) and (2), we see that $\sup cA=c\sup A$.
-------------------------------------------------------------------
$x\ge\inf A$ for all $x\in A$.
$cx\ge c\inf A$ for all $x\in A$ ie $x\ge c\inf A$ for all $x\in cA$. ------ (3)
$x\ge b$ for all $x\in A\implies\inf A\ge b$
$cx\ge cb$ for all $x\in A\implies c\inf A\ge cb$
$x\ge cb$ for all $x\in cA\implies c\inf A\ge cb$ ------ (4)
From (3) and (4), we see that $\inf cA=c\inf A$.
-------------------------------------------------------------------
Is that ok?