I How Does Schwartz Derive the Schrödinger Equation from QFT?

  • I
  • Thread starter Thread starter dm4b
  • Start date Start date
  • Tags Tags
    Limit Qft Qm
dm4b
Messages
363
Reaction score
4
In Matthew Schwartz's QFT text, he derives the Schrodinger Equation in the low-energy limit. I got lost on one of the steps.

First he mentions that

$$ \Psi (x) = <x| \Psi>,\tag{2.83}$$

which satisfies

$$i\partial _t\Psi(x)=i\partial_t< 0|\phi (\vec{x},t)|\Psi>=i<0|\partial_t\phi(\vec{x},t)|\Psi>.\tag{2.84}$$

That was all fine and good, but he lost me on the next part, going from the first line (i) to the second (ii).

(i)$$i<0|\partial_t\phi(\vec{x},t)|\Psi>=<0|\int \frac{d^3p}{(2\pi )^3} \frac{\sqrt{\vec{p}^2+m^2}}{\sqrt{2\omega _p}}(a_pe^{-ipx}-a_{p}^{\dagger}e^{ipx})|\Psi>$$
(ii)$$=<0|\sqrt{m^2-\vec{\nabla}^2}\phi_0(\vec{x},t)|\Psi>.\tag{2.85}$$

He apparently uses the Klein-Gordon Equation:

$$\partial _{t}^{2}\phi_0=(\vec{\nabla} ^2-m^2)\phi_0$$

to get the following term

$$\sqrt{m^2-\vec{\nabla}^2}$$

in equation (ii) above, but not quite sure how. Can anyone help me out?

I realize you can expand in terms of $$p^2/m$$ and make use of $$\nabla^2e^{ipx}=-p^2e^{-ipx}$$ to pull the terms out, but I'm really interested in how he uses the KG equation to achieve the same result.

This is on page 24 for those that have the text.
 
Physics news on Phys.org
I figured out the answer to this, if an admin would like to delete the OP. Didn't see a way to do that myself
 
  • Like
Likes Demystifier
QM limit of QFT, in general, is quite an interesting and nontrivial topic, so just because you solved a technical difficulty is not a reason to not continue the discussion.

For instance, there is no position operator in the relativistic theory, but there is in the non-relativistic limit. How about that? I have my own answer, but there is no general consensus on that.
 
  • Like
Likes bhobba and dm4b
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Back
Top