I How Does Shankar's PQM Derive Schrödinger's Equation?

  • I
  • Thread starter Thread starter hideelo
  • Start date Start date
hideelo
Messages
88
Reaction score
15
On page 230 in Shankar's PQM (1994 edition) he is trying to show that the path integral formulation reduces to Schroedinger's eqn. The equation he comes up against is the following

$$\psi (x,\epsilon) = \sqrt{\frac{m}{2 \pi i \epsilon \hbar}}\int_{-\infty}^{\infty}dx' \psi (x',0) \exp\left[\frac{im(x-x')^2}{2\epsilon \hbar} \right] \exp\left[\frac{-i\epsilon}{ \hbar} V\left( \frac{x+x'}{2},0\right) \right]$$

He makes the argument that the first exponential is going to oscillate like hell because ##\epsilon \hbar## is so small. He says that in order to keep this under control we need to restrict the range of x' so that

$$\frac{m \eta^2}{2\epsilon \hbar} \leq \pi$$
where
$$\eta = (x-x')$$

which I follow. He then changes the variable of integration from x' to ##\eta##, no big deal. He expands everything inside the integral to second order in ##\eta## because that corresponds to first order in ##\epsilon##. I'm still on board. He then integrates over ##\eta## from ##-\infty## to ##\infty## and this is where he loses me. What happened to ##\frac{m \eta^2}{2\epsilon \hbar} \leq \pi## ? The way he expressed everything inside the integral assumed that ##\eta## is small. So why is he integrating over the whole range of ##\eta##?
 
Physics news on Phys.org
It doesn't matter, because ##\epsilon \hbar## is so small. That's the usual way to evaluate an integral approximately with the method of steepest descent. You usually get an asymptotic series with that technique.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
I am not sure if this belongs in the biology section, but it appears more of a quantum physics question. Mike Wiest, Associate Professor of Neuroscience at Wellesley College in the US. In 2024 he published the results of an experiment on anaesthesia which purported to point to a role of quantum processes in consciousness; here is a popular exposition: https://neurosciencenews.com/quantum-process-consciousness-27624/ As my expertise in neuroscience doesn't reach up to an ant's ear...
Back
Top