- #1
greg_rack
Gold Member
- 363
- 79
Hi guys.
I am studying the relativistic implementation of the standard Tsiolkosvky rocket equation, but ran into some doubts.
Doesn't special relativity apply only to inertial frames of reference(non-accelerated)? Then, how could it be used for the rocket equation, which speaks of a ##\Delta v##, of course caused by an acceleration?
Moreover, could someone give me a shallow and brief(since I haven't actually studied it, nor have the mathematical knowledge to fully get it) explanation of the hyperbolic motion equation, which takes to this ##t'=\frac{c}{a}sinh(\frac{at}{c}## relation between proper and dilated time?
I am studying the relativistic implementation of the standard Tsiolkosvky rocket equation, but ran into some doubts.
Doesn't special relativity apply only to inertial frames of reference(non-accelerated)? Then, how could it be used for the rocket equation, which speaks of a ##\Delta v##, of course caused by an acceleration?
Moreover, could someone give me a shallow and brief(since I haven't actually studied it, nor have the mathematical knowledge to fully get it) explanation of the hyperbolic motion equation, which takes to this ##t'=\frac{c}{a}sinh(\frac{at}{c}## relation between proper and dilated time?