MHB How does the Bessel Function Expansion relate to J_{0}(u+v)?

AI Thread Summary
The discussion focuses on deriving the relationship between the Bessel function expansion and the expression for J_{0}(u+v). The key equation used is g(x,t) = g(u+v,t) = g(u,t)g(v,t), leading to the conclusion that J_{0}(u+v) can be expressed as a product of J_{0}(u) and J_{0}(v) plus a summation term involving J_{s}(u) and J_{-s}(v). The derivation involves manipulating exponential forms and summations of Bessel functions. The final result confirms that J_{0}(u+v) = J_{0}(u)J_{0}(v) + 2∑_{s=1}^{∞}J_{s}(u)J_{-s}(v). The discussion concludes with a successful resolution of the problem.
Another1
Messages
39
Reaction score
0
Bessel function

using $$g(x,t)=g(u+v,t)=g(u,t)g(v,t)$$

to show that $$J_{0}(u+v)=J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$

___________________________________________________________________________________________
my solution

$$g(u+v,t)=e^{\frac{u+v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=e^{\frac{u}{2}(t-\frac{1}{t})}\cdot e^{\frac{v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=\sum_{n=-\infty}^{\infty}J_{n}(u)t^{n}\sum_{n=-\infty}^{\infty}J_{n}(v)t^{n}$$

$$J_{n}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!(n+s)!}(\frac{u+v}{2})^{n+2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}(\frac{u}{2}+\frac{v}{2})^{2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{(\frac{u}{2}+\frac{v}{2})^{2s} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \sum_{k=0}^{2s}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \left(\frac{u}{2}\right)^{2s}+\left(\frac{v}{2}\right)^{2s}+ \sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=J_{0}(u)+J_{0}(v)+\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{\sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$

this is wrong
____________________________________________________________________________________________

please help me to solve this soluion
 
Last edited:
Mathematics news on Phys.org
Another said:
using $$g(x,t)=g(u+v,t)=g(u,t)g(v,t)$$

to show that $$J_{0}(u+v)=J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$

___________________________________________________________________________________________
my solution

$$g(u+v,t)=e^{\frac{u+v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=e^{\frac{u}{2}(t-\frac{1}{t})}\cdot e^{\frac{v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=\sum_{n=-\infty}^{\infty}J_{n}(u)t^{n}\sum_{n=-\infty}^{\infty}J_{n}(v)t^{n}$$

$$J_{n}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!(n+s)!}(\frac{u+v}{2})^{n+2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}(\frac{u}{2}+\frac{v}{2})^{2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{(\frac{u}{2}+\frac{v}{2})^{2s} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \sum_{k=0}^{2s}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \left(\frac{u}{2}\right)^{2s}+\left(\frac{v}{2}\right)^{2s}+ \sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=J_{0}(u)+J_{0}(v)+\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{\sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$

this is wrong
____________________________________________________________________________________________

please help me to solve this soluion

now i can solve it thankkkk !

$$g(u+v,t)=g(u,t)g(v,t)$$

$$e^{\frac{u+v}{2}(t-\frac{1}{t})}=e^{\frac{u}{2}(t-\frac{1}{t})}e^{\frac{v}{2}(t-\frac{1}{t})}$$

$$\sum_{n=-\infty}^{\infty}J_{n}(u+v)t^n=\sum_{l=-\infty}^{\infty}J_{l}(u)t^l\sum_{m=-\infty}^{\infty}J_{m}(v)t^m$$

let n = 0
$$J_{0}(u+v)= \left(...+J_{-1}(u)t^{-1}+J_{0}(u)+J_{1}(u)t^1+...\right)\left(...+J_{-1}(v)t^{-1}+J_{0}(v)+J_{1}(v)t^1+...\right)$$

but $$J_{-n}(u)=(-1)^{n}J_{n}(u)$$
so...
$$J_{0}(u+v)= J_{0}(u)J_{0}(v)+2J_{1}(u)J_{-1}(v)+2J_{2}(u)J_{2}(v)+...$$
$$J_{0}(u+v)= J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$
 
Funions!
 
Joppy said:
Funions!

oh sorry I mean function n and c missing from word
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top