How Does the Doppler Effect Influence Sound Frequency at the Great Wall?

AI Thread Summary
The discussion focuses on the Doppler Effect as it relates to sound frequency when a stationary air horn emits a 500Hz sound towards the Great Wall of China, with a person running towards the wall at 3 m/s. The initial calculation for the frequency of the sound reaching the wall is correct at 504.3Hz, but the reflection needs to be considered for the final frequency heard by the runner. After accounting for the reflection, the frequency of the sound perceived by the runner is calculated to be 495.75Hz, leading to a beat frequency of 8.6Hz. The participants confirm the calculations and clarify the effects of the Doppler shift in this scenario.
rmorelan
Messages
8
Reaction score
0
Hi, I am a little confused about some aspects of sound waves. I was hoping to just check to see if I am on the right track.

I have a problem where a guy is moving towards the great wall of china, with a air horn, emitting a constant frequency sound of 500Hz. The sounds is going to hit the great wall and bounce back, introducing some interferance. The speed of sound is 350m/s. The persons is running towards the wall at 3/ms, and I have to find the frequency of amplitude beats he hears and the frequency of the sound he hears reflected.

ok, so f' = (v/(v +/- Vs)*f

He is moving towards the wall, so Vs is negative? This gives

f' = (350/(347)) * 500 = 504.3Hz

Is the frequency of beats then just the difference, ie (504.3-500)Hz for 4.3Hz beat Hz. Am I making any sense?

thanks!
 
Physics news on Phys.org
Yes I believe that's right.
 
rmorelan said:
Hi, I am a little confused about some aspects of sound waves. I was hoping to just check to see if I am on the right track.

I have a problem where a guy is moving towards the great wall of china, with a air horn, emitting a constant frequency sound of 500Hz. The sounds is going to hit the great wall and bounce back, introducing some interferance. The speed of sound is 350m/s. The persons is running towards the wall at 3/ms, and I have to find the frequency of amplitude beats he hears and the frequency of the sound he hears reflected.

ok, so f' = (v/(v +/- Vs)*f

He is moving towards the wall, so Vs is negative? This gives

f' = (350/(347)) * 500 = 504.3Hz

Is the frequency of beats then just the difference, ie (504.3-500)Hz for 4.3Hz beat Hz. Am I making any sense?

thanks!

No. There is reflection here, so you need to take into account two different Doppler effects. What you found is the frequency of the wave reaching the wall. Now, this wave is reflected and travels back to the guy. You need to do another Doppler effect calculation with this time the guy being the observer so you will need to multiply the frequency you found by another factor (with now the source, which is the wall, being at rest and the observer moving toward the source at 3 m/s).

Once you get the final frequency, you just subtract 500Hz to get the beat frequency, as you had done.

Patrick
 
I see, of course :)
 
ok, I am still a little confused but things are a bit clearer :)

Actually I made a mistake anyway, the air horn is actually stuck into the ground, so it doesn't move, just the guy running towards the "great wall of china". I should learn to read!

So we have a setup like

(((( horn )))) man -> [ wall ]

So he is moving way from the source, and towards the reflected wave I guess from the wall. So there is two doppler effects? One being:

f' = (350/(353)) * 500 = 495.75Hz ( what the sound behind him sounds like)

and

f' = (350/(347)) * 500 = 504.3Hz (what the reflected sound sounds like )

i am assuming the sound actually reflected is 500 Hz, the frequency of the emitted sounds, as the doppler effect doesn't change the frequency relative to the other standary objects ie the wall, and source are moving.

So the difference would be then 504.3 - 495.8 = 8.6 Hz?

Thanks a lot everyone, this stuff is really messing me up :)

rk
 
Looks like you got it just fine.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...

Similar threads

Replies
3
Views
3K
Replies
15
Views
990
Replies
5
Views
3K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
3
Views
3K
Back
Top