How Does Time Dilation Affect the Forces Between Fast-Moving Objects?

godzenon
Messages
8
Reaction score
0
I meant to say fast moving "objects" in the title, my bad... my title kind of sucks

https://en.wikipedia.org/wiki/Relativistic_electromagnetism#The_field_of_a_moving_point_charge

That section is basically what my questions are about. I want to know generally about the overall forces. Two protons in the LHC moving the same direction will not experience much repulsion difference relative to their own perspective, but from our perspective outside the LHC their repulsion should weaken? The repulsion of two protons without electrons I mean.

But two protons colliding in the LHC going opposite directions. Because their speeds are not relative, they would have increased repulsion? I can't understand the wikipedia article that well. I think it's saying the increased repulsion would be from the sides as they pass each other (assuming they didn't collide)?

ok, one more question about, voltage and current, that i guess kind of has to do with time dilation. If you took a beam of fast moving electrons, could that create a voltage for a wire or something near by right? I mean of course a wire with current would create a voltage, but would it also work for a beam of electrons in a vacuum? How come electrons are supposed to repulse other electrons, but a voltage creates a current? thanks
 
Last edited:
Physics news on Phys.org
Two protons in the LHC moving together feel an electrostatic repulsive force in their frames. When you transform this force to the Lab frame, it is weaker, because of time dilation.

In the Lab frame, these protons still have their electrostatic repulsion, but they also create a current, which is attractive, and substantially reduces the attraction. You get exactly the same force in this frame through this analysis as you did in the preceding paragraph.
 
  • Like
Likes godzenon
Vanadium 50 said:
Two protons in the LHC moving together feel an electrostatic repulsive force in their frames. When you transform this force to the Lab frame, it is weaker, because of time dilation.

In the Lab frame, these protons still have their electrostatic repulsion, but they also create a current, which is attractive, and substantially reduces the attraction. You get exactly the same force in this frame through this analysis as you did in the preceding paragraph.
ok, what about colliding protons?
 
What about them?
 
Vanadium 50 said:
What about them?

by lab frame, you mean for an outside observer i assume

nothing should change relatively so i don't see why there would be an attraction force, when we don't see an attraction force at low speeds

the link i gave suggested that moving charges which are not relative have different forces acting upon them, just read my middle paragraph for the thread topic, or read anything past the first paragraph instead of asking me "what about them?"
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Back
Top