How Does Torque Affect Body Stability in Ergonomics?

  • Thread starter Thread starter pennywise1234
  • Start date Start date
  • Tags Tags
    Torque
AI Thread Summary
Torque plays a crucial role in body stability and ergonomics by influencing how forces are applied at different distances from a pivot point, affecting rotational movement. The total torque on a body is the sum of individual torques, which must equal zero for equilibrium, indicating that a body cannot change its rotational motion without external torque. The relationship between torque and angular momentum highlights that stability is linked to the body's center of mass and base of support. Understanding how torque affects joint rotation can inform ergonomic practices aimed at improving stability. Overall, the correlation between torque and stability is essential for optimizing ergonomic design and functionality.
pennywise1234
Messages
44
Reaction score
0
1. The problem statement
what role does torque play in body stability and ergonomics ?
 
Physics news on Phys.org
I'm not sure what level of explanation you want... Most simply, torque is a turning moment. The idea of torque is that if you apply a force at a greater distance, you get a bigger rotation - it would be easier to swing a cat by its tail than its middle (if you wished to swing cats), and it requires less effort to open a door from the edge, rather than at the pivot.

If you want a mathematical definition:

$$ \tau_{Total} = \sum_{i} \tau_{i} = \sum_{i} \vec{r_{i}} \times \vec{F_{i}} $$

Where ##\tau_{Total}## is the total torque on the body, and is the sum of a number of torques, ##\tau_{i} = \vec{r_{i}} \times \vec{F_{i}}## where, ##\vec{r_{i}}## is the position vector, and ##\vec{F_{i}}## is the force.

The angular momentum of a body is related to the torque applied:

$$ \vec{L} = \vec{r} \times \vec{p} $$

$$ \frac{d\vec{L}}{dt} = \frac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \frac{d\vec{p}}{dt} $$

So

$$ \frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} $$

i.e -if we don't have any torque, then the angular momentum must be constant in time. The body cannot be spinning up or spinning down - in cannot be changing its motion in any rotational sense. So in this way, we see that a necessary (but not sufficient! - e.g we also have to balance forces) condition for equilibrium is that the total torques on a body must be zero...

Does that help at all?
 
Penny... have a think about the joints in the human body. I think all (?) Involve rotation.
 
The question is more geared towards when trying to improve stability or how do stability and torque correlate. I was thinking it had to do with Centre of mass or base of support. I have no idea what could be said for ergonomics
 
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top