- #106
Ben Niehoff
Science Advisor
Gold Member
- 1,893
- 171
stevendaryl said:I'm a little on shakier ground when it comes to diffeomorphisms. The passive case is clear enough--it's just a coordinate change, and the equations are the same for any coordinate system. The active case is the one I'm a little fuzzy on. Roughly speaking, it works like this:
Let m be a (continuous, invertible, differentiable, blah, blah, blah) function from ℝ4 to ℝ4. Let X[itex]\alpha[/itex] be some coordinate system (function from spacetime points [itex]P[/itex] to ℝ4). Let S be some solution to the full equations of motion. Then if the theory is invariant under active diffeomorphisms, then we can get another solution S' in the following round-about way:
Let X'[itex]\alpha[/itex] be the coordinate system obtained from X[itex]\alpha[/itex] by applying the transformation m. Then pick S' so that the description of S' in terms of the original coordinate system X[itex]\alpha[/itex] looks the same as the description of S in terms of the new coordinate system X'[itex]\alpha[/itex].
But S' is related to S by (an obvious) coordinate transformation. So you haven't generated a new solution at all; you've generated the same solution, in different coordinates.
Solutions are only distinct up to isometries. If you want to generate a truly different solution, you will have to consider diffeomorphisms which are not isometries; i.e., you will have to forget about coordinate transformations, either "active" or "passive", and do something entirely different. See my earlier post about changing g by an infinitesimal perturbation.
Remember there is no invariant notion of what it means to "hold coordinates fixed while changing the manifold under them", unless you have a suitable mathematical definition you'd like to explain. Coordinates are just labels for points on the manifold; they have no sense of location other than that!