A How is eq. 1.5.3 written using three-vectors and how does it lead to eq. 1.5.4?

SwetS
Messages
1
Reaction score
0

Attachments

  • Screenshot (94).png
    Screenshot (94).png
    35.6 KB · Views: 98
Physics news on Phys.org
The two expressions aren't the same, I think. 1.5.3 assumes that ##\vec{\beta}_v=(\beta_v,0,0)^T##, while 1.5.4 makes no such assumption. You could just plug this assumption into 1.5.4 as a plausibility check. If you actually need to derive 1.5.4 then I'd start with four velocities and work from there, not from 1.5.3.

@vanhees71 might add more detail.
 
A slightly better plausibility argument is to argue that ##(\beta_v+\bar{\beta}_w^1,\bar\beta_w^2/\gamma_v,\bar\beta_w^3/\gamma_v)^T## could be said to be ##\vec\beta_v## plus the component of ##\vec{\bar\beta}_w## parallel to ##\vec\beta_v## plus ##1/\gamma_v## times the component of ##\vec{\bar\beta}_w## perpendicular to ##\vec\beta_v##.

The vector times the dot product in the last term in brackets in 1.5.4 pulls out the component of ##\vec{\bar\beta}_w## parallel to ##\vec\beta_v##, which is then added/subtracted appropriately to get what I wrote in words above.
 
The idea is to calculate the three-velocity ##\vec{w}## first for the simplifying case that ##\vec{v}=v \vec{e}_1##. Then one makes use of the fact that ##\vec{w}=\vec{W}/W^0## is a "three-vector", i.e., it transforms under rotations as a three-vector, and thus one can get the expression for an arbitrary ##\vec{v}## by writing (1.5.2) in a form that is kovariant under rotations; you can indeed check that when setting ##\vec{v}=v \vec{e}_1## in (1.5.3) you get back (1.5.2). Since (1.5.3) is written in a kovariant form under rotations, it must be correct for the general case, if it's correct for the special case.
 
  • Like
Likes SwetS and Ibix
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top