How Is the Sum Rule for Limits Proven?

  • Thread starter Thread starter Tsunoyukami
  • Start date Start date
  • Tags Tags
    Limits Sum
Tsunoyukami
Messages
213
Reaction score
11
Prove the Sum Rule for Limits

$$\lim_{x\to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M$$

Proof

Assume the following:
$$\lim_{x \to a} f(x) = L, \space\lim_{x \to a} g(x) = M$$
Then, by definition
##\forall \epsilon_1 > 0, \exists \delta_1 > 0## such that ##0<|x-a|<\delta_1 \implies |f(x)-L|<\epsilon_1##
and
##\forall \epsilon_2 >0, \exists \delta_2 > 0## such that ##0<|x-a|<\delta_2 \implies |g(x)-M|<\epsilon_2##

Choose ##\delta = \min(\delta_1, \delta_2)##.

Then ##0<|x-a|<\delta \implies |f(x)-L|<\epsilon_1## and ##|g(x)-M|<\epsilon_2##.

Notice ##|[f(x) + g(x)] - [L+M]| = |[f(x)-L] + [g(x)-M]| \leq |f(x)-L| + |g(x)-M|## by the triangle inequality. Then ##|[f(x) + g(x)] - [L+M]| \leq |f(x)-L| + |g(x)-M| < \epsilon_1 + \epsilon_2 = \epsilon##.

Then ##|[f(x) + g(x)] - [L+M]| < \epsilon##. Therefore we conclude

$$\lim_{x\to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M$$



I was comparing my proof (the one above) to the proof offered on page 93 of James Stewart's Calculus (6e) and noticed that instead of ##\epsilon_1## and ##\epsilon_2## he uses ##\frac{\epsilon}{2}## for each of these so that their sum is ##\epsilon##.

Is there anything incorrect with my method? I figure that my approach with two different possible values of ##\epsilon_i## for each of the limits is just a more generalized way of saying the same thing - but the other proofs I've looked at online all use ##\frac{\epsilon}{2}## - is there any reason for this?

Thanks in advance!
 
Physics news on Phys.org
Tsunoyukami said:
Prove the Sum Rule for Limits

$$\lim_{x\to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M$$

Proof

Assume the following:
$$\lim_{x \to a} f(x) = L, \space\lim_{x \to a} g(x) = M$$
Then, by definition
##\forall \epsilon_1 > 0, \exists \delta_1 > 0## such that ##0<|x-a|<\delta_1 \implies |f(x)-L|<\epsilon_1##
and
##\forall \epsilon_2 >0, \exists \delta_2 > 0## such that ##0<|x-a|<\delta_2 \implies |g(x)-M|<\epsilon_2##

Choose ##\delta = \min(\delta_1, \delta_2)##.

Then ##0<|x-a|<\delta \implies |f(x)-L|<\epsilon_1## and ##|g(x)-M|<\epsilon_2##.

Notice ##|[f(x) + g(x)] - [L+M]| = |[f(x)-L] + [g(x)-M]| \leq |f(x)-L| + |g(x)-M|## by the triangle inequality. Then ##|[f(x) + g(x)] - [L+M]| \leq |f(x)-L| + |g(x)-M| < \epsilon_1 + \epsilon_2 = \epsilon##.

Then ##|[f(x) + g(x)] - [L+M]| < \epsilon##. Therefore we conclude

$$\lim_{x\to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x) = L + M$$
I was comparing my proof (the one above) to the proof offered on page 93 of James Stewart's Calculus (6e) and noticed that instead of ##\epsilon_1## and ##\epsilon_2## he uses ##\frac{\epsilon}{2}## for each of these so that their sum is ##\epsilon##.

Is there anything incorrect with my method? I figure that my approach with two different possible values of ##\epsilon_i## for each of the limits is just a more generalized way of saying the same thing - but the other proofs I've looked at online all use ##\frac{\epsilon}{2}## - is there any reason for this?

Thanks in advance!

If you had started with a statement of what you want to prove, you would have written:

To prove: Given ##\epsilon > 0##, show there is ##\delta > 0## such that if ##0<|x-a|< \delta## then ##|(f(x)+g(x)) - (L+M)| < \epsilon##. And that is why you would pick the intermediate values in your argument so it all comes out less than ##\epsilon## at the end.

Your proof should start with "Suppose ##\epsilon > 0##" Then give your argument.
 
Oh, I see so it would be something like this:

Proof
Let ##\epsilon>0## be given. We must find ##\delta > 0## such that ##0<|x-a|<\delta \implies |f(x)+g(x) -(L+M)|<\epsilon##. By applying the triangle inequality we can write ##|f(x)+g(x) - (L+M)| \leq |f(x)-L| + |g(x)-M|##.

I will pause the proof here momentarily. The proofs I have seen have continued by letting each of these terms be less than ##\frac{\epsilon}{2}## - my question is whether or not I could let one of them be less than ##\frac{\epsilon}{3}## and the other be less than ##\frac{2\epsilon}{3}## - the sum of these terms is still ##\epsilon## so this should still be valid correct? I will attempt to complete the proof using these values.

Getting back to the main body of the proof:

Let ##|f(x) - L|<\frac{\epsilon}{3}## and ##|g(x)-M|<\frac{2\epsilon}{3}##. Since ##\epsilon>0## it follows that both ##\frac{\epsilon}{3}>0## and ##\frac{2\epsilon}{3}>0##. Since both the limit of ##f(x)## and ##g(x)## exist as ##x## approaches ##a## there exist ##\delta_1## and ##\delta_2## satisfying the following conditions:

$$0<|x-a|<\delta_1 \implies |f(x)-L|<\frac{\epsilon}{3}$$
$$0<|x-a|<\delta_2 \implies |g(x)-M|<\frac{2\epsilon}{3}$$

Choose ##\delta=\min(\delta_1, \delta_2)##. If ##0<|x-a|<\delta## then ##0<|x-a|<\delta_1## and ##0<|x-a|<\delta_2## so ##|f(x)-L|<\frac{\epsilon}{3}## and ##|g(x)-M|<\frac{2\epsilon}{3}##.

Then ##|f(x)+g(x) - (L+M)| \leq |f(x)-L| + |g(x)-M| < \frac{\epsilon}{3} + \frac{2\epsilon}{3} = \epsilon##.

This completes the proof.
What was bothering me was that every proof I saw relied upon splitting the two terms equally into ##\frac{\epsilon}{2}## when I figured that it should be possible to split ##\epsilon## into two uneven terms.

Does the above constitute a valid proof?
 
Yes. It doesn't matter how you break it up as long as the total parts add to less than ##\epsilon##.
 
  • Like
Likes 1 person
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top