- #1
Satvik Pandey
- 591
- 12
Homework Statement
There is a chain of uniform density on a table with negligible friction. The length of the entire chain is 1 m. Initially, one-third of the chain is hanging over the edge of the table. How long will it take the chain (in seconds) to slide off the table?
Homework Equations
The Attempt at a Solution
I tried to use conservation of energy.
Initially position of CM of hanging part of chain wrt to table is 1/3.
And mass of part of chain hanging down the table is 2m/3.
So ##{ E }_{ pi }=\frac { 2mg }{ 9 } ##
If the chain falls by distance '##x##'
then position of CM of hanging part of chain wrt to table will be ##(3x+2)/6##
And mass of part of chain hanging down the table will be ##(3x+2)m/3##
So ##{ E }_{ px }=\frac { { (2+3x) }^{ 2 } }{ 18 } mg##
The potential energy is converted into kinetic energy.
So ##\frac { { (2+3x) }^{ 2 } }{ 18 } mg-\frac { 2mg }{ 9 } =\frac { 1 }{ 2 } \times \frac { (2+3x)m }{ 3 } { v }^{ 2 }##
on simplifying I got
##\frac { { (2+3x) }^{ 2 } }{ 18 } mg-\frac { 2mg }{ 9 } =\frac { 1 }{ 2 } \times \frac { (2+3x)m }{ 3 } { v }^{ 2 }##
or ##\frac { 1 }{ { v }^{ 2 } } =\frac { (3x+2) }{ x(3x+4)g } ##
or ##\int { dt } =\int { \sqrt { \frac { (3x+2) }{ x(3x+4)g } } dx } ##
Is this correct till here?