- #71
Satvik Pandey
- 591
- 12
On integrating I gotOrodruin said:Looks fine so far.
##\frac { { s }^{ 2 } }{ 2 } =g\frac { { x }^{ 3 } }{ 3 }##
should I need to worry about constant or it will be included in constant at end of solution.
On substituting the value of s
##{ s }^{ 2 }={ x }^{ 2 }{ \left\{ { \frac { dx }{ dt } } \right\} }^{ 2 }##
##{ x }^{ 2 }{ \left\{ { \frac { dx }{ dt } } \right\} ^{ 2 } }\times \frac { 1 }{ 2 } =\frac { { x }^{ 3 } }{ 3 } g##
##\sqrt { \frac { 3 }{ 2gx } } dx=dt##
##\sqrt { \frac { 3 }{ 2g } } \int { \frac { dx }{ \sqrt { x } } } =\int { dt } \\ ##
##\sqrt { \frac { 3 }{ 2g } } 2\sqrt { x } =t##
Is it correct?