I How Many Corners Does a Moving Diameter Intersect on a Grid?

AI Thread Summary
The discussion revolves around a geometric problem involving a moving diameter of a circle intersecting corners on a grid. As the diameter rotates, it intersects grid corners at specific stops, with a total of 205 intersections calculated at certain key positions. The analysis includes considerations of how increasing the number of intervals affects the total intersections. It highlights that only specific stops result in corner intersections, particularly at the center and certain clock positions. The complexity increases when exploring rational solutions related to the cosine function, indicating limitations in finding additional intersections beyond the identified points.
Duhoc
Messages
55
Reaction score
0
TL;DR Summary
interesting counting problem for fun
Summary: interesting counting problem for fun

Imagine we draw a circle with diameter d and mark off sixty equal intervals like minutes on a clock. Then we draw two diameters perpendicular to one another and divide each in sixty equal intervals. Using the intervals on the diagonals we lay out a Cartesian plane with corresponding grid. Then we start one of the diameters moving like the minute hand of a clock. And like a minute hand the diameter stops at each point we marked off on the circle. As the diameter makes one revolution what is the sum of corners of the grid it intersects with at all of the stops. If we divided each interval of our plane ten times how many? 100 times? Is there an expression to reflect the number of intersections each time we increase the intervals by one order of magnitude.
 
Mathematics news on Phys.org
If I understand the problem, only on certain stops will the minute hand land on any corners at all. And when it does land on a corner point, it is likely to land on many at a time.

At all stops, it will touch the center point - so that's 1. When the minute hand is at the 12:00/6:00 position, it will touch another 60 corners. At 3:00/9:00 is will touch another 60. At 1:30/7:30 and 4:30/10:30 it will touch another 42 each.

But then we get into the problem of finding rational solutions to ##cos(\pi y)## where ##y## is rational. I don't believe there are any such solutions beyond what I have already listed.

So the tally will stand at 205.
 
Thank you for replying, Scott. However, I don’t understand 1:30/7:30 designation as the countable corners are onlybat the stops of the minute hand and at these times the minute hand is not at a stop.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top