MHB How many ways can you draw 3 of one suit and 2 of another suit?

  • Thread starter Thread starter nari
  • Start date Start date
AI Thread Summary
To determine the number of ways to draw 3 cards of one suit and 2 cards of another from a standard 52-card deck, the calculation involves three components: C(13, 3) for choosing 3 cards from one suit, C(13, 2) for choosing 2 cards from another suit, and C(4, 2) for selecting which two suits to use. The last component is crucial because it accounts for the different suit combinations, ensuring that combinations like 3 hearts and 2 spades are distinguished from 3 spades and 2 hearts. The initial calculations do not specify suits, hence the need for the additional factor. Understanding this distinction clarifies the overall counting method.
nari
Messages
4
Reaction score
0
Hi! I am completing a practice exam and there is this answer to a question that I do not understand. It says:

An experiment consists of drawing a hand of 5 cards from a standard deck of 52 cards. How many ways can you draw 3 of one suit and 2 of another suit?

I thought it was C(13, 3) x C(13,2). But it turns out it is C(13, 3) x C(13,2) x C(4,2). I don't understand where that last bit comes from. I know there are 4 suits, so I am guessing that bit is choosing two suits out of the four, but why is that not redundant when considering the first two parts of the answer?
 
Mathematics news on Phys.org
nari said:
Hi! I am completing a practice exam and there is this answer to a question that I do not understand. It says:

An experiment consists of drawing a hand of 5 cards from a standard deck of 52 cards. How many ways can you draw 3 of one suit and 2 of another suit?

I thought it was C(13, 3) x C(13,2). But it turns out it is C(13, 3) x C(13,2) x C(4,2). I don't understand where that last bit comes from. I know there are 4 suits, so I am guessing that bit is choosing two suits out of the four, but why is that not redundant when considering the first two parts of the answer?

Hi nari,

Welcome to MHB. :) This is a good question!

The first two parts, C(13, 3) x C(13,2), deal with choosing select cards from a pool in the appropriate way, but say nothing about the suit. For the first term, C(13, 3), this could be any of the 4 suits right? And then for the second expression, C(13,2), this could be from any of the 3 remaining suits. We haven't dealt with the problem of where the 13's come from yet. We are counting 3H2S the same as 3S2D right now.

That's where this last piece comes in. Does that make sense or help?
 
Jameson said:
Hi nari,

Welcome to MHB. :) This is a good question!

The first two parts, C(13, 3) x C(13,2), deal with choosing select cards from a pool in the appropriate way, but say nothing about the suit. For the first term, C(13, 3), this could be any of the 4 suits right? And then for the second expression, C(13,2), this could be from any of the 3 remaining suits. We haven't dealt with the problem of where the 13's come from yet. We are counting 3H2S the same as 3S2D right now.

That's where this last piece comes in. Does that make sense or help?

Yes, it does make sense! Thank you :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top