MHB How Old Is the Tree Based on Carbon-14 Dating?

  • Thread starter Thread starter karush
  • Start date Start date
AI Thread Summary
The discussion revolves around determining the age of a tree using carbon-14 dating, specifically from charcoal found in a volcanic eruption. The charcoal contains 62.8% of the original carbon-14, leading to the calculation of the tree's age using the half-life of carbon-14, which is 5700 years. The formula used is P=100(1/2)^(A/H), where P is the percentage of carbon-14 remaining, A is the age, and H is the half-life. After solving the equation, the calculated age of the tree is approximately 3826 years. The conversation also touches on the choice of variable names in the calculations but ultimately emphasizes the same result.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{ The charcoal from a tree killed
in a vocano eruption }$
$\textsf{contained 62.8% percent of the carbon-14 found in living mater.}$
$\textsf{How old is the tree, to the nearest year? }$
$\textsf{Use $5700$ years for the half-life of carbon-14} $

$$1=2e^{k\cdot 5700}$$
$$k=-0.00012160$$

presume this is how we find $ k$
$$62.8=100e^{-0.00012160y}$$
$$y\approx 3826$$
 
Last edited:
Mathematics news on Phys.org
If $A$ is the age of the tree (in years), and $P$ is the percentage of the original amount of carbon-14 still present and $H$ is the half-life of carbon-14 (in years), then I would write:

$$P=100\left(\frac{1}{2}\right)^{\Large{\frac{A}{H}}}$$

What do you get when you solve for $A$ (which is what we're asked to find)?
 
MarkFL said:
If $A$ is the age of the tree (in years), and $P$ is the percentage of the original amount of carbon-14 still present and $H$ is the half-life of carbon-14 (in years), then I would write:

$$P=100\left(\frac{1}{2}\right)^{\Large{\frac{A}{H}}}$$

What do you get when you solve for $A$ (which is what we're asked to find)?
$$62.8=100\left(\frac{1}{2}\right)^{a/5700}$$
$$a=3826$$

why not use $y$ instead $a$?
 
karush said:
$$62.8=100\left(\frac{1}{2}\right)^{a/5700}$$
$$a=3826$$

What I meant was to take:

$$P=100\left(\frac{1}{2}\right)^{\Large{\frac{A}{H}}}$$

And solve for $A$:

$$\frac{100}{P}=2^{\Large{\frac{A}{H}}}$$

$$A=H\log_{2}\left(\frac{100}{P}\right)$$

Now plug in the given data (we have a general formula now for other problems):

$$A=5700\log_{2}\left(\frac{100}{62.8}\right)\approx3826$$

karush said:
why not use $y$ instead $a$?

Whatever you choose is fine. :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top