How should I show the following by using the signum function?

  • #1
Math100
797
221
Homework Statement
Show that ## \operatorname{sgn}(\sin\theta)sin^{2}\theta=\frac{8}{\pi}\sum_{k=1}^{\infty}\frac{sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##.
Relevant Equations
The signum function is defined as ## \operatorname{sgn}(x)=1 ## for ## x>0 ##, ## \operatorname{sgn}(x)=0 ## for ## x=0 ## and ## \operatorname{sgn}(x)=-1 ## for ## x<0 ##.
Proof:

Let ## f(x) ## be a function of the real variable ## x ## such that the integral ## \int_{-\pi}^{\pi}f(x)dx ## exists and if the Fourier coefficients ## (a_{n}, b_{n}) ## are defined by ## a_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\cos nx dx, n=0, 1, ..., ## and ## b_{n}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(x)\sin nx dx, n=1, 2, ..., ## then the Fourier series of ## f(x) ## is the periodic function ## F(x)=\frac{1}{2}a_{0}+\sum_{k=1}^{\infty}(a_{n}\cos nx+b_{n}\sin nx) ##.
Consider the function ## f(\theta)=\operatorname{sgn}(\sin\theta)sin^{2}\theta ##.
Then ## \int_{-\pi}^{\pi}\operatorname{sgn}(\sin\theta)sin^{2}\theta d\theta=[\frac{1}{2}(\theta-\sin\theta\cos\theta)\operatorname{sgn}(sin\theta)]_{-\pi}^{\pi}=0 ## because ## \operatorname{sgn}(sin\pi)=0 ## and ## \operatorname{sgn}(sin(-\pi))=0 ##.
Note that ## a_{0}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\theta)cos(0)d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta d\theta=\frac{1}{\pi}(0)=0 ##.
This gives ## a_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\theta)cos k\theta d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta\cos k\theta d\theta=0 ## for all ## n ## because ## f(\theta)=\operatorname{sgn}(sin\theta)sin^{2}\theta ## is an odd function and ## \cos k\theta ## is an even function.
Hence, ## F(\theta)=\frac{1}{2}a_{0}+\sum_{k=1}^{\infty}(a_{k}\cos k\theta+b_{k}\sin k\theta)=\sum_{k=1}^{\infty}b_{k}\sin k\theta ## where ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}f(\theta)\sin k\theta d\theta ## for ## k=1, 2, ... ##.

From here, how should I evaluate/simplify ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta\cdot\sin k\theta d\theta ## for ## k=1, 2, ... ## in order to get the right hand side of ## \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##? Where does ## sin((2k-1)\theta) ## come from? Is it because of the odd function and so we're only considering the ## 2k-1 ## terms? Or it might be the case that ## \operatorname{sgn}(\sin\theta)=1 ## from the signum function? Is everything correct in my work up to here?
 
Physics news on Phys.org
  • #2
Notice that ##\operatorname{sgn}(\sin(\theta))\sin^2(\theta) = -\sin^2(\theta)## on the interval ##[-\pi, 0]## and ##\sin^2(\theta)## on the interval ##[0, \pi]##. So you should be working with two integrals for ##b_k##.
I'm not sure about the ##\sin((2k - 1)\theta)## part but they might be using the double angle identity for ##\cos(2\theta)## here. That is, ##\cos(2\theta) = 1 - 2\sin^2(\theta) \Rightarrow \sin^2(\theta) = \frac{1 - \cos(2\theta)}2##.
 
  • Like
Likes Math100
  • #3
Note that [tex]\begin{split}
\int_{-\pi}^\pi \operatorname{sgn}(\sin(\theta))\sin k\theta\,d\theta &=
\int_0^\pi \sin^2 \theta \sin k\theta\,d\theta - \int_{-\pi}^0 \sin^2\theta \sin k\theta\,d\theta \\
&= 2\int_0^\pi \sin^2 \theta \sin k\theta\,d\theta\end{split}[/tex] by oddness of [itex]\sin [/itex]. Now the idea is to use trig identities to express [itex]\sin^2\theta \sin k\theta[/itex] as a linear combination of sines. Setting [itex]\sin^2 \theta = (1 - \cos 2\theta)/2[/itex] is the first step; then you can use [tex]
\cos 2\theta \sin k\theta = \frac{\sin(k+2)\theta + \sin (k-2)\theta}{2}.[/tex]
 
  • Like
Likes Math100
  • #4
pasmith said:
Note that [tex]\begin{split}
\int_{-\pi}^\pi \operatorname{sgn}(\sin(\theta))\sin k\theta\,d\theta &=
\int_0^\pi \sin^2 \theta \sin k\theta\,d\theta - \int_{-\pi}^0 \sin^2\theta \sin k\theta\,d\theta \\
&= 2\int_0^\pi \sin^2 \theta \sin k\theta\,d\theta\end{split}[/tex] by oddness of [itex]\sin [/itex]. Now the idea is to use trig identities to express [itex]\sin^2\theta \sin k\theta[/itex] as a linear combination of sines. Setting [itex]\sin^2 \theta = (1 - \cos 2\theta)/2[/itex] is the first step; then you can use [tex]
\cos 2\theta \sin k\theta = \frac{\sin(k+2)\theta + \sin (k-2)\theta}{2}.[/tex]
So ## \sin^{2}\theta\sin k\theta=(\frac{1-cos(2\theta)}{2})\cdot\sin k\theta=\frac{1}{2}[sin k\theta-(\frac{sin(k+2)\theta+sin(k-2)\theta}{2})]=\frac{1}{2}(\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{2})=\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{4} ##.
And I've got ## 2\int_{0}^{\pi}sin^{2}\theta\sin k\theta d\theta=2\int_{0}^{\pi}(\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{4})d\theta=\frac{1}{2}\int_{0}^{\pi}(2sin k\theta-sin(k+2)\theta-sin(k-2)\theta)d\theta=\int_{0}^{\pi}sin k\theta d\theta-\frac{1}{2}\int_{0}^{\pi}sin(k+2)\theta d\theta-\frac{1}{2}\int_{0}^{\pi}sin(k-2)\theta d\theta=[\theta\cdot\sin k\theta]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k+2)}{2}]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k-2)}{2}]_{0}^{\pi}=\pi\cdot\sin k\pi-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k+2)}{2})-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k-2)}{2}) ##.
Thus, ## \int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin k\theta d\theta=-\frac{(sin(k+2)\cdot\pi+sin(k-2)\cdot\pi-4\sin k\theta)\pi}{4} ##.

From here, what should I do in order to find/evaluate ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(\sin\theta)\sin^{2}\theta\cdot\sin k\theta d\theta ## for ## \sum_{k=1}^{\infty}b_{k}\sin k\theta ## for ## k=1, 2, ... ##?
 
  • #5
[itex]\sin k\theta[/itex] means [itex]\sin(k\theta)[/itex]. Evaluate the integrals.
 
Last edited:
  • #6
pasmith said:
[itex]\sin k\theta[/itex] means [itex]\sin(k\theta)[/itex]. Evaluate the integrals.
Observe that ## b_{k}=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)sin^{2}\theta\cdot\sin k\theta d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[(\frac{1-cos(2\theta)}{2})\cdot\sin k\theta]d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[\frac{1}{2}(sin k\theta-(\frac{sin(k+2)\theta+sin(k-2)\theta}{2}))]d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[\frac{1}{2}({2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{2})]d\theta=\frac{1}{\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)[\frac{2sin k\theta-sin(k+2)\theta-sin(k-2)\theta}{4}]d\theta=\frac{1}{4\pi}\int_{-\pi}^{\pi}\operatorname{sgn}(sin\theta)\cdot(2sin k\theta-sin(k+2)\theta-sin(k-2)\theta)d\theta=\frac{1}{4\pi}[-\frac{\operatorname{sgn}(sin\theta)\cdot(\theta^{2}k\cos(2)\sin k+2\cos(\theta k))}{k}]_{-\pi}^{\pi}=\frac{1}{4\pi}[-\frac{2\cos(\pi k)}{k}+\frac{2\cos(-\pi k)}{k}]=0 ##.

So as a result, I've got ## b_{k}=0 ##, which means that ## \sum_{k=1}^{\infty}b_{k}\sin k\theta=0 ## but that doesn't makes sense because I didn't get the desired result as ## \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{\sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##. What's wrong in here?
 
  • #7
The [itex]\operatorname{sgn}(\sin \theta)[/itex] is the difficult bit, so you should get rid of that before doing any trig manipulations. So start with [tex]\begin{split}
b_k &= \frac{1}{\pi} \int_{-\pi}^\pi \operatorname{sgn}(\sin \theta) \sin^2 \theta \sin (k\theta)\,d\theta \\
&= \frac{2}{\pi} \int_0^\pi \sin^2 \theta \sin (k\theta)\,d\theta \qquad \mbox{(see my first post)} \\
&= \frac{1}{\pi} \int_0^\pi (1 - \cos (2\theta)) \sin (k\theta)\,d\theta \\
&= \frac{1}{\pi} \int_0^\pi \sin (k\theta) - \tfrac 12 \sin ((k-2)\theta) - \tfrac 12\sin((k+2)\theta) \,d\theta.\end{split}[/tex]
 
  • Like
Likes Math100 and SammyS
  • #8
pasmith said:
The [itex]\operatorname{sgn}(\sin \theta)[/itex] is the difficult bit, so you should get rid of that before doing any trig manipulations. So start with [tex]\begin{split}
b_k &= \frac{1}{\pi} \int_{-\pi}^\pi \operatorname{sgn}(\sin \theta) \sin^2 \theta \sin (k\theta)\,d\theta \\
&= \frac{2}{\pi} \int_0^\pi \sin^2 \theta \sin (k\theta)\,d\theta \qquad \mbox{(see my first post)} \\
&= \frac{1}{\pi} \int_0^\pi (1 - \cos (2\theta)) \sin (k\theta)\,d\theta \\
&= \frac{1}{\pi} \int_0^\pi \sin (k\theta) - \tfrac 12 \sin ((k-2)\theta) - \tfrac 12\sin((k+2)\theta) \,d\theta.\end{split}[/tex]
So ## b_{k}=\frac{1}{\pi}([\theta\cdot\sin k\theta]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k-2)}{2}]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k+2)}{2}]_{0}^{\pi})\implies b_{k}=\frac{1}{\pi}[\pi\cdot\sin k\pi-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k-2)}{2})-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k+2)}{2})]\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{1}{4}(\pi^{2}\cdot\sin(k-2)+\pi^{2}\cdot\sin(k+2)))\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{\pi^{2}}{4}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4\pi}(4\pi\cdot\sin k\pi-\pi^{2}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4}(4\sin k\pi-\pi(sin(k-2)+sin(k+2))) ##.

Hence, ## b_{k}=-\frac{\pi}{4}(sin(k-2)+sin(k+2)) ## because ## sin(k\pi)=0, \forall k\in\mathbb{Z} ##.
 
Last edited:
  • #9
Math100 said:
So ## b_{k}=\frac{1}{\pi}([\theta\cdot\sin k\theta]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k-2)}{2}]_{0}^{\pi}-\frac{1}{2}[\frac{\theta^{2}\cdot\sin(k+2)}{2}]_{0}^{\pi})\implies b_{k}=\frac{1}{\pi}[\pi\cdot\sin k\pi-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k-2)}{2})-\frac{1}{2}(\frac{\pi^{2}\cdot\sin(k+2)}{2})]\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{1}{4}(\pi^{2}\cdot\sin(k-2)+\pi^{2}\cdot\sin(k+2)))\implies b_{k}=\frac{1}{\pi}(\pi\cdot\sin k\pi-\frac{\pi^{2}}{4}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4\pi}(4\pi\cdot\sin k\pi-\pi^{2}(sin(k-2)+sin(k+2)))\implies b_{k}=\frac{1}{4}(4\sin k\pi-\pi(sin(k-2)+sin(k+2))) ##.

Hence, ## b_{k}=-\frac{\pi}{4}(sin(k-2)+sin(k+2)) ## because ## sin(k\pi)=0, \forall k\in\mathbb{Z} ##.
That integration doesn't look correct at all.

What is the antiderivative of ##\sin x## ?

Also:
Please break up those long lines of LATEX.
 
  • Like
Likes Math100 and Mark44
  • #10
SammyS said:
Please break up those long lines of LATEX.
+1
 
  • Like
Likes Math100
  • #11
SammyS said:
That integration doesn't look correct at all.

What is the antiderivative of ##\sin x## ?

Also:
Please break up those long lines of LATEX.
Observe that ## b_{k}=\frac{1}{\pi}([-\frac{\cos\theta k}{k}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k-2)\theta)}{k-2}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k+2)\theta)}{k+2}]_{0}^{\pi})\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(-\frac{\cos((k-2)\pi)}{k-2}+\frac{1}{k-2})-\frac{1}{2}(-\frac{\cos((k+2)\pi)}{k+2}+\frac{1}{k+2})] ##.
So we get
## b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(\frac{1-\cos((k-2)\pi)}{k-2})-\frac{1}{2}(\frac{1-\cos((k+2)\pi)}{k+2})]\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(\frac{1-\cos((k-2)\pi)}{k-2}+\frac{1-\cos((k+2)\pi)}{k+2})]\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(\frac{-2k(\cos(k\pi)-1)}{(k-2)(k+2)})] ##.
Thus
## b_{k}=\frac{1}{\pi}(\frac{1-\cos\pi k}{k}+\frac{k(\cos(k\pi)-1)}{(k-2)(k+2)})\implies
b_{k}=\frac{1}{\pi}(\frac{-(k-2)(k+2)(\cos(k\pi)-1)+k^{2}(\cos(k\pi)-1)}{k(k-2)(k+2)}\implies
b_{k}=\frac{1}{\pi}[\frac{(\cos(k\pi)-1)(k^{2}-(k-2)(k+2))}{k(k-2)(k+2)}]\implies
b_{k}=\frac{4}{\pi}(\frac{\cos(k\pi)-1}{k(k-2)(k+2)}) ##.

From here, how should I find/evaluate/simplify ## \sum_{k=1}^{\infty}b_{k}\sin k\theta ## for ## k=1, 2, ... ## in order to get ## \frac{8}{\pi}\sum_{k=1}^{\infty}\frac{\sin((2k-1)\theta)}{(2k-1)(3+4k-4k^2)} ##?
 
  • #12
What is [itex]\cos(k\pi)[/itex] for integer [itex]k[/itex]?
 
  • Like
Likes Math100
  • #13
Math100 said:
Observe that
##b_{k}=\frac{1}{\pi}([-\frac{\cos\theta k}{k}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k-2)\theta)}{k-2}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k+2)\theta)}{k+2}]_{0}^{\pi})\implies
b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(-\frac{\cos((k-2)\pi)}{k-2}+\frac{1}{k-2})-\frac{1}{2}(-\frac{\cos((k+2)\pi)}{k+2}+\frac{1}{k+2})] ##.
As already requested by @SammyS, please break up long lines of LaTeX so that a reader doesn't have to scroll off what's visible on the screen to see the far ends of them.

Like so:
##b_{k}=\frac{1}{\pi}([-\frac{\cos\theta k}{k}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k-2)\theta)}{k-2}]_{0}^{\pi}-\frac{1}{2}[-\frac{\cos((k+2)\theta)}{k+2}]_{0}^{\pi})##
##\implies b_{k}=\frac{1}{\pi}[\frac{1-\cos\pi k}{k}-\frac{1}{2}(-\frac{\cos((k-2)\pi)}{k-2}+\frac{1}{k-2})-\frac{1}{2}(-\frac{\cos((k+2)\pi)}{k+2}+\frac{1}{k+2})] ##
 
  • Like
Likes Math100 and SammyS
  • #14
pasmith said:
What is [itex]\cos(k\pi)[/itex] for integer [itex]k[/itex]?
## \cos(k\pi)=-1 ## for odd integers ## k ##. And this has reminded me of something where I finally got the desired result/answer.
 
  • #15
Thank you, Pasmith, Sammy and Mark44.
 

FAQ: How should I show the following by using the signum function?

What is the signum function?

The signum function, often denoted as sign(x), is a mathematical function that extracts the sign of a real number. It is defined as follows: sign(x) = 1 if x > 0, sign(x) = 0 if x = 0, and sign(x) = -1 if x < 0. This function is useful for determining whether a number is positive, negative, or zero.

How can I express a piecewise function using the signum function?

To express a piecewise function using the signum function, you can rewrite each piece of the function in terms of the sign of the variable. For example, if you have a function f(x) defined as f(x) = x^2 for x > 0 and f(x) = -x for x ≤ 0, you can express it as f(x) = sign(x) * x^2 + (1 - sign(x)) * (-x) for all x.

Can the signum function be used to simplify expressions involving absolute values?

Yes, the signum function can simplify expressions involving absolute values. The absolute value of a number x can be expressed as |x| = x * sign(x). This allows you to rewrite equations or inequalities involving absolute values in a more manageable form using the signum function.

How do I use the signum function in calculus, specifically for derivatives?

In calculus, the signum function can be used to define piecewise derivatives. For example, if you have a function that changes behavior at a certain point, you can use the signum function to denote the derivative in different intervals. If f(x) = x^2 * sign(x), then the derivative f'(x) can be expressed using the product rule and the signum function's properties.

What are some common applications of the signum function in physics or engineering?

The signum function is commonly used in physics and engineering to model systems with discontinuities or to describe forces that change direction. For instance, it can be used in control systems to determine the direction of a control signal, in mechanics to represent the direction of velocity or acceleration, and in signal processing to analyze waveforms that switch between positive and negative values.

Back
Top