How Small Must Earth's Mass Be Compressed to Form a Black Hole?

  • Thread starter Thread starter ticels
  • Start date Start date
  • Tags Tags
    Gravitation
AI Thread Summary
To determine how small Earth's mass must be compressed to form a black hole, the escape velocity must equal the speed of light, leading to the calculation of the Schwarzschild radius. Using Newtonian mechanics, the limiting radius can be derived by setting the escape velocity formula to the speed of light and solving for radius. Additionally, once the radius is established, the weight of a mass of 4.26μg at the surface of this super-dense sphere can be calculated using the gravitational force formula. The discussion emphasizes the application of gravitational equations to understand black hole formation. This problem illustrates the intersection of mass, gravity, and the fundamental principles of physics.
ticels
Messages
1
Reaction score
0
a black hole is an object so heavy that neither matter nor even light can secape the influence of its gravitational field. Since no light can scape from it, it appears black. Suppose a mass apporxmiately the size of the Earth's mass 5.56x10^24 kg is packed into a small unifrom sphere of radius r.

*Use speed of light c=3.0x10^8 and Universal Gravitation G
*Escape speed must be the speed of light
*Relative equation
g=sq(G/r2); F=GMm/r^2; escape velocity=sq(2GM/r)

1) based on Newtonian mechanics, determine the limiting radius r0 where this mass (approximately the size of the Earth's mass) becomes a black hole. Answer in units of m.

2)Using Newtonian mechanics, how much would a mass of 4.26μg weigh at the surface of this super-dense sphere? Answer in units of N.

thx for help in advance.
 
Physics news on Phys.org
Hey hey. This is a pretty cool problem I think. What you're doing is calculating the Schwartzchild radius. You can get more info on that from Wikipedia: http://en.wikipedia.org/wiki/Schwarzschild_radius

Basically, you set the escape velocity to be the speed of light and then solve for "r".

You plug in c for the velocity, the given mass for M, and G for G and voila you've got the Schwartzchild radius.

For the 2nd problem, now that you have "r", you can solve for F from Newton's law of universal gravitation: F=GMm/r^2
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top