How Steep a Hill Can You Park a Car With Static Friction of 0.8?

AI Thread Summary
The discussion revolves around calculating the maximum angle a parked car can be left on a hill, given a static friction coefficient of 0.8 between hard rubber and pavement. The user seeks guidance on the formula to determine this angle, noting that their textbook lacks sufficient examples. They understand the forces involved, including gravitational force and normal force, but are struggling to find the angle. A link to a helpful resource is shared, which provides relevant formulas and diagrams. The conversation emphasizes the need for clearer instructional materials on this topic.
Havoc2020
Messages
5
Reaction score
0
Hi, the problem I have is one dealing with static friction. The problem states: The coefficient of static friction between hard rubber and normal street pavement is about 0.8. On how steep a hill (maximum angle) can you leave a parked car?

I know that the downward force is "g" and that the normal force is equal to "g" since there is no acceleration. I am just having problems finding the angle. Our textbook is lacking in examples. I am not looking for an answer but a formula to use or even a hint.

Thanks in advance.
 
Physics news on Phys.org
On a flat horizontal surface, the weight (mg) would point directly down. As the angle increases, the weight points down, but the component normal to the surface is reduced by the cos of the angle.

See - http://hyperphysics.phy-astr.gsu.edu/hbase/frict2.html#fp
Look at the third pane.
 
Last edited:
Thanks

Thanks for the help. The formulas and the diagram helped alot.
 
Havoc2020 said:
Hi, the problem I have is one dealing with static friction. The problem states: The coefficient of static friction between hard rubber and normal street pavement is about 0.8. On how steep a hill (maximum angle) can you leave a parked car?

I know that the downward force is "g" and that the normal force is equal to "g" since there is no acceleration. I am just having problems finding the angle. Our textbook is lacking in examples. I am not looking for an answer but a formula to use or even a hint.

Thanks in advance.

Which textbook did you get that question from? can give me the ISBN # and the site you bought it from ?

thanks
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top