How to Calculate Revolutions of a Wheel with Applied Brakes?

AI Thread Summary
To calculate the revolutions of a wheel with applied brakes, one must first determine the angular deceleration caused by the braking force. The moment of inertia and angular velocity are essential for calculating the initial kinetic energy and torque. Using the relationship between torque, moment of inertia, and angular acceleration, the angular deceleration can be found. The total angular displacement can then be calculated using the equations of rotational motion. The final answer indicates that the wheel makes approximately 672.9 revolutions before coming to rest.
Digdug12
Messages
15
Reaction score
0

Homework Statement



A wheel, with circumference 0.6 m and moment of inertial 43 kg m2 about its center, rotates about a frictionless axle with angular velocity 13 radians per second. A brake is applied which supplies a constant force to a point on the perimeter of the wheel of 9 N, tangent to the wheel and opposing the motion. How many revolutions will the wheel make before coming to rest?


Homework Equations


KErotational=I*Omega2
Torque=I*alpha
I=M*R2

The Attempt at a Solution


I'm lost at how to start this problem, I tried to get the deceleration caused by the 9N force applied on the wheel by Newton's Second Law but I couldn't get the mass, so i used the I=M*R2 equation to get the mass and then used F=M*a to find the deceleration, took that answer and divided by 2pi to find the revolutions, but the answer was off. What am I missing?
 
Physics news on Phys.org
The angular deceleration is given by a= \alpha r. Find \alpha. Then use the equations of rotational motion to find the total angular displacement from the initial angular velocity to rest.
 
I used a=alpha*r and i got the alpha to be .003, using Omegaf2=Omegai2+2*alpha*Theta i get 28166, but the answer should be 672.9

EDIT: nevermind, i got it, thanks!
 
Last edited:
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top