- #1
ahuebel
- 11
- 0
I would like to further understand rotational inertia. I understand that for a point mass, I = MR^2 and for a continuous object it is basically the sum of all "little" MR^2 for each element of that object. I get a little fuzzy when actually solving for I for an object. For example, if we have a cone, the mass M of the cone is the density * volume or rho*(1/3)pi*r^2. So to find inertia we take the integral of the product of mass and R^2 but over what interval? My book says to take it over the volume but I am not 100% sure what that means. Would it be the triple integral dx dy dz (or more easily dr d(theta) dz)? If so, what would be the integrand?
TIA for any help
TIA for any help