- #1
Eclair_de_XII
- 1,083
- 91
Homework Statement
"If ##f:\mathbb{R}^n \rightarrow \mathbb{R}^m## and ##g:\mathbb{R}^m\rightarrow \mathbb{R}^p##, show that ##(g\circ f)_*=g_*\circ f_*## and ##(g\circ f)^* = f^* \circ g^*##."
Homework Equations
Pushforward: ##f_*(v_a)=(Df(a)(v))_{f(a)}##
Pullback: ##f^*(\omega)(a)(v_a)=\omega(f(a))(f_*(v_a))=\omega(f(a))(Df(a)(v))_{f(a)}##
The Attempt at a Solution
This is my attempt for the first part:
##(g\circ f)_*(v_a)=(D(g\circ f)(a)(v))_{(g\circ f)(a)}=(Dg(f(a))Df(a)(v))_{g(f(a))}##
I don't know how to proceed from here, and I'm pretty sure that the subscript on the last term in my expression is wrong.
Last edited: