How to calculate the four-momentum of a photon in FRW Metric

AI Thread Summary
To calculate the four-momentum of a photon in the Friedmann-Robertson-Walker (FRW) metric, one can utilize the Lagrangian mechanics approach, which simplifies the process. The Lagrangian is expressed as L = g_{ij}(dx^i/dλ)(dx^j/dλ) = -\dot{t}^2 + a^2(t)(\dot{r}^2 + r^2\dot{\theta}^2 + r^2\sin^2\theta \dot{\phi}^2). The four-momentum components can be derived by taking the partial derivatives of the Lagrangian with respect to the generalized velocities, specifically p_i = ∂L/∂(dx^i/dλ). Additionally, the geodesic equation can also be employed to calculate the four-momentum, which aligns with the professor's preferred method. Understanding both approaches provides a comprehensive view of the problem.
JohnH123
Messages
3
Reaction score
0
Homework Statement
Find the 4-momentum of a photon moving in the x-direction. That is, find dt/dλ
and dx/dλ as functions of a. Note that dt/dλ at a = 1 is the present-day frequency f0.
Relevant Equations
The spatially flat Robertson-Walker Metric: ds^2 = -dt^2 + a^2(t)[dr^2+r^2(dtheta^2 + sin^2(theta)dphi^2)]
I have calculated the Christoffel symbols for the above given metric, but I don't understand how to calculate a photon's four-momentum using this information. I believe it has something to do with the null geodesic equation but I can't understand how to put that information into the problem. Thank you.
 
Physics news on Phys.org
This problem can be done using geodesic equation of motion. But there is a simpler way to do using Lagrangian mechanics. The Lagrangian of the given metric is:
##L= g_{ij}\frac{dx^i}{d\lambda}\frac{dx^j}{d\lambda}= -\dot t^2+ a^2(t)(\dot r^2+ r^2 \dot \theta^2+ r^2 \sin^2\theta \dot \phi^2) ##

Now, the momentum is :
##p_i=\frac{\partial L}{\partial \dot x_i}##
Now, simplify it for example using the fact that metric is isotropic to evaluate ##r_{th}## component of momentum. For ##t## component, you will get same result as geodesic equation. Solve it (again using the fact that metric is isotropic to remove ##\theta## and ##\phi## components from metric).
 
Abhishek11235 said:
This problem can be done using geodesic equation of motion. But there is a simpler way to do using Lagrangian mechanics. The Lagrangian of the given metric is:
##L= g_{ij}\frac{dx^i}{d\lambda}\frac{dx^j}{d\lambda}= -\dot t^2+ a^2(t)(\dot r^2+ r^2 \dot \theta^2+ r^2 \sin^2\theta \dot \phi^2) ##

Now, the momentum is :
##p_i=\frac{\partial L}{\partial \dot x_i}##
Now, simplify it for example using the fact that metric is isotropic to evaluate ##r_{th}## component of momentum. For ##t## component, you will get same result as geodesic equation. Solve it (again using the fact that metric is isotropic to remove ##\theta## and ##\phi## components from metric).
Just so I’m clear, ##\frac{\partial L}{\partial \dot x_i}## means the partial of the lagrangian with respect to each coordinate right? So the four momentum has components in coordinates {t, r, ##\theta##, ##\phi##}, so those components are found by finding ##\frac{\partial L}{\partial \dot t}##, ##\frac{\partial L}{\partial \dot r}## and so on, correct?
 
Abhishek11235 said:
This problem can be done using geodesic equation of motion. But there is a simpler way to do using Lagrangian mechanics. The Lagrangian of the given metric is:
##L= g_{ij}\frac{dx^i}{d\lambda}\frac{dx^j}{d\lambda}= -\dot t^2+ a^2(t)(\dot r^2+ r^2 \dot \theta^2+ r^2 \sin^2\theta \dot \phi^2) ##

Now, the momentum is :
##p_i=\frac{\partial L}{\partial \dot x_i}##
Now, simplify it for example using the fact that metric is isotropic to evaluate ##r_{th}## component of momentum. For ##t## component, you will get same result as geodesic equation. Solve it (again using the fact that metric is isotropic to remove ##\theta## and ##\phi## components from metric).
Also, could you please expand on how I could calculate the four-momentum using the geodesic equation? I believe that’s the method my professor would like me to use, as stated in the problem. Thank you.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top