MHB How to Determine the Order of \( g^8 \) in a Group?

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Element Group
Guest2
Messages
192
Reaction score
0
Say an element $g$ in a group has order $28$. How do I find the order of say $g^8$?
 
Physics news on Phys.org
Guest said:
Say an element $g$ in a group has order $28$. How do I find the order of say $g^8$?

Hi Guest,

We are looking for the lowest $k$ such that $(g^{8})^k = 1$.
And we know that $28$ is the lowest such that $g^{28} = 1$.
That means we're looking for the lowest $k$ such that $8k$ is a multiple of $28$.
That is:
$$k = \frac{\text{lcm}(28,8)}{8}$$
 
I like Serena said:
Hi Guest,

We are looking for the lowest $k$ such that $(g^{8})^k = 1$.
And we know that $28$ is the lowest such that $g^{28} = 1$.
That means we're looking for the lowest $k$ such that $8k$ is a multiple of $28$.
That is:
$$k = \frac{\text{lcm}(28,8)}{8}$$
Thanks. I wonder whether there's a systematic way of working this out if one has to find $g^i$ for all $2 \le i \le 27$?
 
Last edited:
Guest said:
Thanks. I wonder whether there's a systematic way of working this out if one has to find $g^i$ for all $2 \le i \le 27$?

Alternatively, we can write it as:
$$k=\frac{28}{\gcd(28, i)}$$
That is, find the common prime factors and divide 28 by them.

I'm afraid that's as systematic as it gets.
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top